شماره مدرك :
10088
شماره راهنما :
9318
پديد آورنده :
احمدي، فاطمه
عنوان :

حل دستگاه معادلات چند جمله اي متقارن

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
رياضي محض﴿هندسه﴾
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
سال دفاع :
1393
صفحه شمار :
هشت، 122ص.: مصور، جدول
يادداشت :
ص.ع. به فارسي و انگليسي
استاد راهنما :
امير هاشمي
استاد مشاور :
اعظم اعتماد
توصيفگر ها :
حلقه ي چند جمله اي هاي پايا , پاياهاي اوليه , پاياهاي ثانويه , پايه ي ساگبي - گربنر , پايه ي گربنر پايا , تجزيه ي هيروناكا , حلقه ي كوهن مكولي , سري هيلبرت , سري مولين
تاريخ نمايه سازي :
30/2/94
استاد داور :
مليحه يوسف زاده، مجيد گازر
تاريخ ورود اطلاعات :
1396/09/27
كتابنامه :
كتابنامه
رشته تحصيلي :
علوم رياضي
دانشكده :
رياضي
كد ايرانداك :
ID9318
چكيده انگليسي :
Solving Symmetric Polynomial Systems Fateme Ahmadi fateme ahmadi@math iut ac ir Date 2014 12 6 Depatrment of Mathematical Sciences Isfahan University of Tecnology Isfahan 84156 83111 IranSupervisor Dr Amir Hashemi Amir Hashemi@cc iut ac irAdvisor Dr Azam etemad ae110mat@cc iut ac ir2010 MSC Primary 13P10 Secondary 68W30Keywords Invariant polynomial ring primary invariant secondary invariant SAGBI Gr bner ba sis invariant Gr bner basis Hironaka decomposition Cohen Macaulley ring Hilbert series Molianseries Abstract One of the classical problems in mathematics is to solve systems of polynomial equations in severalunknowns Today polynomial models are ubiquitous and widely applied across the sciences Theyarise in robotics coding theory statistics machine learninig control theory computer vision imageprocessing and numerous other areas Solving polynomial systems is also an important tool in computer algebra It is possible to solvepolynomial equation systems using Gr bner bases For this purpose we can compute the Gr bnerbasis w r t lexicographical ordering and from this basis we can compute simpler the solutions ofthe initial system On the other hand some of the polynomail equation systems that are important inapplication have symmetries In this thesis we study an efficient method to solve polynomial systems whose equations are leftinvariant by the action of a finite group G For this purpose we shall consider first an invariantpolynomial ring i e the ring of polynomials which are invariant under the action of the given group Such a polynomial ring can be represented by the primary and secondary invariants For solvingsymmetric polynomial system we use the truncated form of SAGBI Gr bner bases a generalizationof Gr bner bases to ideals of sub algebras of a given polynomial ring and a Gr bner bases in theinvariant ring K 1 n where i for each i is the i th elementary symmetric polynomial In fact to solve an invariant system we provide two main algorithms first from an algorithm like
استاد راهنما :
امير هاشمي
استاد مشاور :
اعظم اعتماد
استاد داور :
مليحه يوسف زاده، مجيد گازر
لينک به اين مدرک :

بازگشت