شماره مدرك :
11122
شماره راهنما :
10238
پديد آورنده :
دهقان، مرضيه
عنوان :

حل مسايل كنترل بهينه غيرخطي تاخيري با محدوديت نامساوي با استفاده از تركيب توابع بلاك - پالس و چندجمله اي هاي لژندار

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
رياضي كاربردي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
سال دفاع :
1394
صفحه شمار :
ده، 118ص.:نمودار
استاد راهنما :
حميدرضا مرزبان
واژه نامه :
به فارسي و انگليسي
توصيفگر ها :
ماتريس عملياتي مشتق , نقاط گره اي لژاندر - گاوس
استاد داور :
فريد شيخ الاسلام، محمود منجگاني
تاريخ ورود اطلاعات :
1395/01/15
دانشكده :
رياضي
كد ايرانداك :
ID10238
چكيده انگليسي :
Solution of nonlinear time delay optimal control problems with inequality constraints using hybrid of block pulse functions and Legendre polynomials Marzieh Dehghan Marzieh Dehghan@math iut ac ir 04 01 2016 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr Hamid Reza Marzban hmarzban@cc iut ac ir 2013 MSC 15J49 34A34 60T65 Keywords multi delay systems block pulse functions Legendre polynimials hybrid functions operational matrix of derivative AbstractIn this thesis an e cient numerical method for solving nonlinear optimal control of multi delaysystems with inequality constraints on the state and control variables is presented Many phenomenaarising in various elds of science and engineering can be described by delay di erential equations Typical examples are chemical processes transmission lines biological models population growth economics and nance and communication networks So far several computational techniques havebeen devoted to the numerical solution of delay di erential equations Optimal control of multi delaysystems is one of the most challenging problems in control theory It is known that except for simplecases it is either di cult or impossible to analytically solve a nonlinear optimal control probleminvolving constraints on the state and control variables As a result an e ective numerical methodhas to be developed Numerical methods for solving nonlinear optimal control problems are typicallydescribed into two categories direct methods and indirect methods Historically many early numericalmethods were based on nding solutions to satisfy a set of necessary optimality conditions resultingfrom Pontryagin s maximum principle These methods are collectively called indirect methods Thereare many successful implementation of indirect methods in the literature Although indirect methodsenjoy some nice properties they su er from many drawbacks For instance the boundary value
استاد راهنما :
حميدرضا مرزبان
استاد داور :
فريد شيخ الاسلام، محمود منجگاني
لينک به اين مدرک :

بازگشت