پديد آورنده :
آقاشاهي، محمدباقر
عنوان :
تشخيص خطاي سيم پيچي استاتور موتور IPMSM با استفاده از مدل به هم پيوسته الكترومغناطيسي - حرارتي
مقطع تحصيلي :
كارشناسي ارشد
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده برق و كامپيوتر
صفحه شمار :
ده، 102ص.: مصور
يادداشت :
ص. ع. به فارسي و انگليسي
استاد مشاور :
محسن دوازده امامي
توصيفگر ها :
آناليز حرارتي , پروفيل حرارتي , شبكه عصبي مصنوعي
استاد داور :
احمدرضا تابش، ابوالقاسم زيدآبادي نژاد
تاريخ ورود اطلاعات :
1395/05/25
رشته تحصيلي :
برق و كامپيوتر
دانشكده :
مهندسي برق و كامپيوتر
چكيده انگليسي :
Fault detection in IPMSM stator winding using coupled electromagnetic thermal model Mohammad Bagher Aghashahi mb aghashahi @ec iut ac ir Data of Submission 06 06 2016 Department of Electrical and Computer Engineering Isfahan University of Technology Isfahan Iran 84156 83111Degree Master of Science Language PersianSupervisor Prof Mehdi Moallem moallem@cc iut ac irAbstract Temperature profile is one of the most important factors which can be used to predictremaining lifetime and fault progress of electrical machines Machine lifetime depends oninsulation lifetime which basically depends on temperature Torque and power density ofmachine depends on current density too Losses and temperature are limitting factors ofcurrent density in electrical machines Thermal analysis is a tool for machine coolingdesign optimization and also can be used for fault diagnosis in electrical machines One of the most frequent faults that occur in an electric machine is stator winding fault This kind of fault is made by stator windings insulation breakdown due to over voltage temperature stress etc Induced voltage in shorted turns causes large circulating currentwhich makes high loss and heat in fault region So temperature profile on motor frame canbe used as a measure of fault diagnosis of stator winding faults In this thesis in order to obtain temperature profile on motor frame a coupledelectromagnetic thermal model is used This profile is computed for different states such ashealthy motor and motor with electrical faults inter turn short circuit fault phase to phaseand phase to ground fault and compared with healthy motor By comparison of simulationresults it is concluded that temperature profile for each fault is different from other types So with analysis of obtained profiles fault type can be identified Artificial neural networkis used for detection of faults by extracted features from temperature profiles Analysis ofthe results shows that standard deviation statistical parameter increases as fault severityrises So this parameter is used as an index for determination of fault severity Keywords thermal analysis fault diagnosis stator winding fault temperature profile artificial neural network
استاد مشاور :
محسن دوازده امامي
استاد داور :
احمدرضا تابش، ابوالقاسم زيدآبادي نژاد