پديد آورنده :
صالحي، سعيد
عنوان :
انتگرال هاي آبلي و سيكل هاي حدي براي خانواده اي از ميدان هاي برداري چندجمله اي درجه سه از نوع لوتكا - ولترابايك انتگرال اول گويا از درجه دو
مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
رياضي كاربردي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
صفحه شمار :
ده، 100ص.: مصور
استاد راهنما :
رسول عاشقي
واژه نامه :
به فارسي و انگليسي
توصيفگر ها :
معيار چبيشف , انشعاب هم زمان
استاد داور :
حميدرضا ظهوري زنگنه، رسول كاظمي
تاريخ ورود اطلاعات :
1395/07/18
چكيده انگليسي :
Abelian integrals and limit cycles for aclass of cubic polynomial vector fields ofLotka Volterra type with a rational first integral of degree two saeed salehi s753saeed@gmail com 2016 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr Rasoul Asheghi r asheghi@cc iut ac ir 2016 MSC 34C05 34A34 34C14 Keywords Limit cycles Abelian integrals Chebyshev criterion Cubic polynomial Vectorfields Simultaneous bifurcation and distribution AbstractThis thesis is based on the paper 4 In this thesis we study the number of limit cycleswhich bifurcate from the periodic orbits of cubic polynomial vector fields of Lotka Volterratype having a rational first integral of degree 2 under polynomial perturbations of degree n The analysis is carried out by estimating the number of zeros of the corresponding Abelianintegrals Moreover using Chebyshev criterion we show that the sharp upper bound forthe number of zeros of the Abelian integrals defined on each period annulus is 3 for n 3 The simultaneous bifurcation and distribution of limit cycles for the system with two periodannuli under cubic polynomial perturbations are considered All configurations u v with0 u v 3 u v 5 are realizable As is known in the study of the qualitative theory ofreal planar differential systems one of the important open problems is the determination oflimit cycles The second part of the famous Hilbert s 16th problem proposed in 1900 asks for
استاد راهنما :
رسول عاشقي
استاد داور :
حميدرضا ظهوري زنگنه، رسول كاظمي