پديد آورنده :
رييسي سرخوني، محدثه
عنوان :
وجود سيكل هاي حدي و انشعاب همو كلينيك در يك مدل گياه - گياهخوار با پاسخ تابعي تعيين شده به وسيله سم
مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
رياضي كاربردي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
صفحه شمار :
هشت، [91]ص.: مصور، جدول، نمودار
يادداشت :
ص. ع. به فارسي و انگليسي
استاد راهنما :
رسول عاشقي
توصيفگر ها :
ميدان هاي برداري دوران يافته , اصل پايان پذيري مسطح تعميم يافته
استاد داور :
حميدرضا ظهوري زنگنه، رسول كاظمي
تاريخ ورود اطلاعات :
1395/10/28
چكيده انگليسي :
Existence of limit cycles and homoclinic bifurcation in a plant herbivore model with toxin determined functional response Mohaddese Raisi Sarkhoni mohaddese raisi@math iut ac ir 2016 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr Rasoul Asheghi r asheghi@cc iut ac ir 2010 MSC 34C05 92C80 Keywords Plant herbivore model Limit cycles Homoclinic bifurcation Rotated vector elds Extended planar termination principle Abstract The purpose of the present thesis is to extend the analytic results on the existence of limit cyclesand present a more complete bifurcation analysis of system 1 1 For ease of presentation we willuse K as the bifurcation parameter in our analysis and generate a bifurcation diagram similar to Fig 2 1 The main questions we intend to answer from our bifurcation analysis are the following Q1 Assume that C N is unimodal a Is there a globally de ned homoclinic bifurcation function That is can the dashed curve in Fig 2 1 be con rmed analytically b Does system 1 1 have limit cycles for d G I1 III1b That is does a limit cycle generated fromHopf bifurcation expand continually and eventually terminate at a homoclinic loop as the parametersvary Q2 What is a necessary and su cient condition on the existence of limit cycles when C N ismonotone By applying the theories of rotated vector elds and the extended planar termination principle wegive a complete answer to the above problem in an analytic way Under the assumption that C N isunimodal rstly we show that the homoclinic bifurcation curve d dhom G exists globally Secondly system 1 1 has at least one limit cycle for d G I1 III1b and no limit cycle for d G III1a
استاد راهنما :
رسول عاشقي
استاد داور :
حميدرضا ظهوري زنگنه، رسول كاظمي