شماره مدرك :
12123
شماره راهنما :
11109
پديد آورنده :
بختياري، الهه
عنوان :

مباحثي پيرامون حدس ريد

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
رياضي كاربردي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
سال دفاع :
1395
صفحه شمار :
نه، [91]ص.: مصور
يادداشت :
ص. ع. به فارسي و انگليسي
استاد راهنما :
رامين جوادي
واژه نامه :
واژه نامه
توصيفگر ها :
گراف هايي با ساختار ساده , كران هاي عمومي , گراف هاي شبه خطي
استاد داور :
بهناز عمومي، غلامرضا اميدي
تاريخ ورود اطلاعات :
1395/11/19
كتابنامه :
كتابنامه
رشته تحصيلي :
علوم رياضي
دانشكده :
رياضي
كد ايرانداك :
ID11109
چكيده انگليسي :
Topics on Reed s Conjecture Elahe Bakhtiary e bakhtiary@math iut ac ir 2017 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr Ramin Javadi rjavadi@cc iut ac ir 2010 MSC 05C15 05C69 Keywords Reed s conjecture Chromatic number clique number AbstractThe chromatic number of a graph G denoted by G is the minimum number of colors requiredto color the vertices of G such that adjacent vertices receive di erent colors In recent decades theconcepts of chromatic number independence number and clique number have been studied widelyin the literature Since the computation of G is NP hard nding bounds for G in terms ofvarious parameters of the given graph G such as clique number G and the maximum degree G has received much attention In this thesis we are going to investigate research studies ona well known conjecture called Reed s Conjecture Let G be a graph of order n with chromaticnumber G maximum degree G and clique number G We know that for every graph G G G G 1 In 1941 Brooks 3 proved that if a connected graph G is neither an oddcycle nor a complete graph then G G This theorem says that if G is a graph with G 3and G G then G G In 26 Reed conjectured that G is bounded above byconvex combinations of the trivial lower bound G and the trivial upper bound G 1 In the G G 1other words he conjectured that G is bounded above by This conjecture 2has not yet been proved for all graphs In this thesis we study the correctness of Reed s conjecturefor some classes of graphs This thesis comes in four chapters All of the required de nitions are explained in Chapter 1 Formore information we consider some simple and basic graphs then verify the Reed s Conjecture forthem In Chapter 2 a vertex partitioning algorithm is explained By the aid of these results theconjecture will be veri ed for some classes of graphs as graphs with independence number 2 graphswith larg maximum degree and some classes of triangle free graphs We survey all these results The
استاد راهنما :
رامين جوادي
استاد داور :
بهناز عمومي، غلامرضا اميدي
لينک به اين مدرک :

بازگشت