پديد آورنده :
پيرمرادي، آمنه
عنوان :
قواعد پذيرفتني در منطق گبي - ديانگ
مقطع تحصيلي :
كارشناسي ارشد
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
صفحه شمار :
هفت، [57]ص.: مصور
يادداشت :
ص. ع. به فارسي و انگليسي
استاد راهنما :
مجتبي آقايي
توصيفگر ها :
زبان منطق گزاره اي , استنتاج طبيعي , منطق هاي كلاسيك , قواعد پذيرفتني د-يانگ و ويسر , مجموعه هاي اشباع و ماقبل چسبيده
استاد داور :
مرتضي منيري، مقداد قاري
تاريخ ورود اطلاعات :
1396/03/21
چكيده انگليسي :
Admissible rules in Gabbay de Jongh logics Amene Pirmoradi a pirmoradi@math iut ac ir 2016 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr Mojtaba Aghaei bomoomi@cc iut ac ir Advisor Dr Meghdad Ghari romidi@cc iut ac ir 2010 MSC 05C15 53C42 Keywords Intuitionistic Logic Intermediate Logic Admissible Rules Disjunction Property Extension Property AbstractIn this paper we study the admissible resules of intermediate logics We establish some general resultson extention of models and sets of formulas These general results are then employed to provide abasis for the admissible rules of the Gabbay de Jongh logics and to show that these logics have nitaryuni cation type In chapter 2 we studied the main de nitions and theorems of propositional classical intuitionisticand intermediate logic and de nitions of disjunction property and extension property Also we explain the admissible rules by some examples and then we express the de Jongh and Visserrules In chapter 3 we give an algorithm according to separability wich can check the projectivity of a for mula in an intuitionistic propositional logic and if the formula isnot projective compute the projectiveapproximation One of the applications of this algorithm is addmissiblity and no admissibility In chapter 4 we check another algorithm for projective approximations to see a rule is addmissibleor not We express the systactic deconstruction algorithm of a set of formulas wich its output isirreducible New variables appear in this algorithm and the de nition of derivability and admissi bility which is given in chapter 1 extend to omit this variables and the comunication of projectiveapproximation wich admissible rules In chapter 5 to proof the projectivity of the formulas in chapter 4 and its relation with the n th
استاد راهنما :
مجتبي آقايي
استاد داور :
مرتضي منيري، مقداد قاري