شماره مدرك :
12843
شماره راهنما :
1061 دكتري
پديد آورنده :
داوري، نرجس
عنوان :

كاهش خطاي سيستم ناوبري تلفيقي INS و حس‌گرهاي كمكي براي شناورهاي زيرسطحي

مقطع تحصيلي :
دكتري
گرايش تحصيلي :
الكترونيك
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده برق و كامپيوتر
سال دفاع :
1396
صفحه شمار :
شانزده، [143]ص.: مصور، جدول، نمودار
يادداشت :
ص.ع. به فارسي و انگليسي
استاد راهنما :
اصغر غلامي
استاد مشاور :
محمدرضا تابان
توصيفگر ها :
سيستم ناوبري اينرسي متصل به بدنه , ناوبري تلفيقي چندنرخي , فيلتر كالمن تطبيقي , داده‌هاي دورافتاده
استاد داور :
جعفر قيصري، محمد دانش
تاريخ ورود اطلاعات :
1396/07/10
كتابنامه :
كتابنامه
رشته تحصيلي :
برق و كامپيوتر
دانشكده :
مهندسي برق و كامپيوتر
كد ايرانداك :
ID1061 دكتري
چكيده فارسي :
4 2 1 روش پيشنهادي تشخيص و حذف داده دورافتاده 68 4 2 1 1 بهينهسازي پارامترها با استفاده از الگوريتم ژنتيك 98 09 4 2 1 2 ساختار الگوريتم ژنتيك 19 4 3 جمعبندي 39 فصل پنجم نتايج آزمونهاي عملي ناوبري شناورهاي زيرسطحي 5 1 نتايج حذف نويز 49 5 2 نتايج كاليبراسيون 89 5 2 1 محاسبه واريانس آلن در آزمون عملي 89 5 2 2 بررسي اثر تخمين باياس حسگرهاي اينرسي 001 5 3 آزمون عملي الگوريتم MAESKF پيشنهادي 101 5 4 آزمون عملي الگوريتم 105 MAEKF 5 5 آزمون عملي الگوريتم VB MAESKF پيشنهادي 801 5 6 نتايج حذف دادههاي دورافتاده 311 5 6 1 بررسي مقاوم بودن الگوريتم VB MAESKF به داده دورافتاده 311 5 6 2 نتايج حذف دادههاي دورافتاده در روش پيشنهادي 611 5 7 نتايج آزمون سازگاري الگوريتمهاي تلفيق 121 5 8 جمعبندي 221 421 فصل ششم نتيجهگيري و پيشنهادها 6 1 خالصهي پژوهش 421 6 2 دستاوردهاي پژوهش 621 6 3 محدوديتهاي پژوهش 721 6 4 پيشنهادهاي آتي 721 مراجع 821 چكيده انگليسي 731 يازده
چكيده انگليسي :
Decreasing Error of Integrated Navigation System and Auxiliary Sensors for Underwater Vehicles Narjes Davari Email n davari@ec iut ac ir Date of Submission on May 24 2017 Department of Electrical and Computer Engineering Isfahan University of Technology Isfahan 84156 83111 Isfahan Iran Supervisor Asghar Gholami gholami@cc iut ac ir Advisor Mohammad Reza Taban mrtaban@cc iut ac ir Associate Professor of Department of Electrical and Computer Engineering Isfahan University of Technology Professor of Department of Electrical and Computer Engineering Isfahan University of Technology Abstract This study considers a multi rate multi sensor data integration problem in the linear state space model withtime varying and unknown measurement noise The designed navigation system is composed of a high ratestrapdown inertial navigation system along with low rate auxiliary sensors with different sampling rates Theauxiliary sensors consist of a global positioning system a Doppler velocity log a depthmeter and aninclinometer Using sensors with different sampling rates requires the design of multi rate integrationalgorithms To improve the performance of multi rate error state Kalman filter MESKF for marine navigationsystem a multi rate adaptive error state Kalman filter MAESKF and a variational Bayesian approximationbased MAESKF VB MAESKF are proposed Performance of the proposed algorithm is investigated usingreal measurements Results of two experimental tests show that the average relative root mean square error RMSE of the position estimated by VB MAESKF can be decreased approximately 57 and 36 whencompared to that of MESKF and MAESKF algorithms respectively Key Words Strapdown Inertial Navigation System Multirate Integrated Navigation System Adaptive Kalman Filter Introduction In the conventional integrated navigation systems the statistical information of theprocess and measurement noises are considered constant Parameter adjustment for theintegration algorithm is too time consuming and difficult In real applications due tovariation of vehicle dynamics environmental conditions and imperfect knowledge of thefilter statistical information the process and measurement covariance matrices are unknownand time dependent In practical conditions sensors with different sampling rates are usedwhich requires the design of multi rate integration algorithm such as MESKF In thisresearch data integration methods such as adaptive filters which compensate the errorscaused by the variation of covariance matrices are used Adaptive integration algorithms forseveral sensors with different sampling rates based on the innovation sequence and thevariational Bayesian approximation are proposed and implemented To improveperformance of MESKF this research presents MAESKF based on the innovation sequence For MAESKF algorithm computation of innovation sequence vector and covariance matrix and measurement noise covariance matrix for multi rate sensors are modified In innovation based adaptive estimator the adaptation uses new information from the filter innovationsequence to estimate the states and statistical information This procedure is based on thecovariance matching technique amending the noise statistics by consistent innovation
استاد راهنما :
اصغر غلامي
استاد مشاور :
محمدرضا تابان
استاد داور :
جعفر قيصري، محمد دانش
لينک به اين مدرک :

بازگشت