شماره مدرك :
13060
شماره راهنما :
11928
پديد آورنده :
بيگدلي، بهنام
عنوان :

رديابي اهداف داراي مانور توسط روش هاي مبتني بر فيلترينگ بهينه

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
مخابرات
محل تحصيل :
اصفهان: انشگاه صنعتي اصفهان، دانشكده برق و كامپيوتر
سال دفاع :
۱۳۹۶
صفحه شمار :
نه، ۸۹ص.:‌ مصور، جدول، نمودار
استاد راهنما :
محمدرضا تابان
استاد مشاور :
مريم مسجدي
توصيفگر ها :
رديابي هدف , مانور هدف , فيلتر كالمن , مدل ديناميكي , فيلتر كالمن دو مرحله اي
استاد داور :
محمد مهدي نقش، احسان يزديان
تاريخ ورود اطلاعات :
1396/09/25
كتابنامه :
كتابنامه
رشته تحصيلي :
برق و كامپيوتر
دانشكده :
مهندسي برق و كامپيوتر
كد ايرانداك :
ID11928
چكيده انگليسي :
Maneuvering Targets Tracking Using Optimal Filtering Based Methods Behnam Bigdeli b bigdeli@ec iut ac ir November 12 2017 Department of Electrical and Computer Engineering Isfahan University of Technology Isfahan 84156 83111 Iran Degree M Sc Language Farsi Supervisor Dr Mohammad Reza Taban mrtaban@cc iut ac ir Abstract Targets tracking is one of the most important issues in various fields such as active defense medicine and so on Although The Kalman filter is one of the useful tools for tracking targets its performance may degrade when the target ismaneuvering Also in many studies in the field of maneuvering targets tracking the dynamic model of the target is assumedto be linear In this dissertation a two dimensional and nonlinear curvilinear model is used to increase the tracking accuracy in which the vector of acceleration and turn rate are cosidered to be either deterministic unknowns or random processes Asthe acceleration vector and the turn rate in the dynamic model are unknown and also to increase tracking accuracy differentmethods of estimating the target acceleration vector are investigated and then a new method is proposed to estimate the starevector using a two stage Kalman filter After that in another proposed method by adding the acceleration vector and theturn rate to the state vector the target dynamic model is recasted and the new state vector is estimated using a nonlinearfilter Since the covariance matrices of the system and measurement noises and acceleration in the case of randomness areunknown to the tracking system in practice they are also estimated along with the state estimation Finally the proposedmethod are compared with the existing methods for maneuvering target tracking with curvilinear dynamic model throughsimulation Key Words Target Tracking Target Maneuver Kalman Filter Dynamic Model Two Stage KalmanFilter
استاد راهنما :
محمدرضا تابان
استاد مشاور :
مريم مسجدي
استاد داور :
محمد مهدي نقش، احسان يزديان
لينک به اين مدرک :

بازگشت