شماره مدرك :
13141
شماره راهنما :
11991
پديد آورنده :
خدادادي، مسعود
عنوان :

انتگرال پذيري و انتگرال ناپذيري فرم هاي نرمال هميلتوني و اختلالات سيستم هاي فوق انتگرال پذير

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
طراحي كاربردي
محل تحصيل :
اصفهان: دنشگاه صنعتي اصفهان، دانشكده علوم رياضي
سال دفاع :
۱۳۹۶
صفحه شمار :
ده، [۱۴۴]ص.: مصور، جدول
استاد راهنما :
رضا مزروعي سبداني
توصيفگر ها :
سيستم هاي هميلتوني , انتگرال پذيري فرم نرمال , زنجيرهاي هميلتوني , سيستم هاي فوق انتگرال پذير و اختلال ها
استاد داور :
رضا خوش سير، مجيد گازر
تاريخ ورود اطلاعات :
1396/11/03
كتابنامه :
كتابنامه
رشته تحصيلي :
علوم رياضي
دانشكده :
رياضي
كد ايرانداك :
ID11991
چكيده انگليسي :
Integrability and Non integrability of Hamiltonian Normal Forms and Perturbations of Superintegrable Systems Masoud Khodadadi khodadadi@math iut ac ir 2017 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr Reza Mazrooei Sebdani mazrooei@cc iut ac ir 2010 MSC 37J15 37J35 37J40 37J45 37J99 Keywords Hamiltonian systems Normal forms Non integrability Hamiltonian chains Time series Superintegrable system AbstractThe evolution of physics after the emergence of classical mechanics and Lagrangian mechanics cameto a new formulation of the Hamiltonian mechanics and provided the ground for the emergenceof quantum mechanics in the late nineteenth century In 1834 Hamilton described the differentialequations of classical mechanics In fact in this new form of classical mechanics it was possible toobtain particle motion equations regardless of the forces exerted on the particles in a system and thecomplex geometry governing some systems Hamilton expressed the differential equations of classical mechanics the Lagrange equations d L L L Rn Rn R dt q q in the canonical form H H p q p q Rn is the generalized momentum and the Hamiltonian function H pq L p q is the LHere p q total energy of the mechanical system Many natural phenomena become Hamiltonian function after modeling Hamiltonian functions todayare one of the most widely used models in engineering and physics Therefore studying the Hamilto nian functions and consequently the systems derived from these functions the Hamiltonian systems and the study of how to obtain the solutions of these systems is important The problem of integration of Hamiltonian systems had already been discussed in works of the brothers
استاد راهنما :
رضا مزروعي سبداني
استاد داور :
رضا خوش سير، مجيد گازر
لينک به اين مدرک :

بازگشت