شماره مدرك :
13327
شماره راهنما :
12146
پديد آورنده :
احمدي، فريبا
عنوان :

رويه هاي حلزوني با سومين فرم اساسي زوال ناپذير در فضاي سه بعدي مينكوفسكي IE

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
رياضي محض
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
سال دفاع :
۱۳۹۶
صفحه شمار :
نه، ۶۶ص.: مصور
استاد راهنما :
اعظم اعتماد
استاد مشاور :
منصور آقاسي
واژه نامه :
انگليسي به فارسي; فارسي به انگليسي
توصيفگر ها :
رويه هاي حلزوني , فضاي اقليدسي , محور نور گونه
استاد داور :
قهرمان طاهريان، محمدرضا كوشش
تاريخ ورود اطلاعات :
1396/12/13
كتابنامه :
كتابنامه
رشته تحصيلي :
علوم رياضي
دانشكده :
رياضي
كد ايرانداك :
ID12146
چكيده انگليسي :
Helicdal surfaces of the non degenerated third fundamental form in Minkowski 3 space Fariba Ahmadi fariba ahmadi1112@yahoo com 2018 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr Azam Etemad ae 110 mat@cc iut ac ir Advisor Dr Mansour Aghasi m aghasi@cc iut ac ir 2010 MSC 53A35 53B30 Keywords helicodal surface light like axis third fundamental form Minkowski space Abstract In this thesis we mainly focus on the helicodal surface with light like axis in Minkowski 3 space This thesis including six section the first and second section is dedicated to the introduction ofother chapter We denote by E3 the 3 dimensional Minkowski Space with Lorentz metric g x y 1 x1 y1 x2 y2 x3 y3 A vector V of E3 is said to be timelike if V V 0 spacelike if V V 0 or 1V 0 and lightlike or null if V V 0 and V 0 A helicoidal motion around the axis w can bedefined as a transformation of E3 gv x gv x A v xT hv w x x1 x2 x3 E1 v R 3 1where h is a non zero constant We defined the third fundamental form III of M if the thirdfundamental form III is non degenerate then it can be regarded as a psuedo Riemannian metricand the Laplacian III with respect to III can be defined formally on the pseudo Riemannianmanifold M By a Lorentz rotation around an axis we mean the 1 parameter group of Lorentziantransformations leaving the axis pointwise fixed Let a b II be a plan curve in E3 and l a 1straight line in II wich does not intersect curve We have three types of helicodal surfaces dependingon the axis of revolution being space like time like and light like In the section 3 we introducehelicodal surface of type I II III and IV and investigated in this helicodal surfaces in the three dimensional Lorentz Minkowski space under the condition II x Ax where A is a real 3 3 matrixand II is the Laplacian operator with respect to the second fundamental form Furthermore in thissection we proved a number of theorems In the section 4 we introduce the special helicodal surface inthe three dimensional Eulidean space under the condition III x Ax where III is the Laplacian
استاد راهنما :
اعظم اعتماد
استاد مشاور :
منصور آقاسي
استاد داور :
قهرمان طاهريان، محمدرضا كوشش
لينک به اين مدرک :

بازگشت