پديد آورنده :
طيبي، سميرا
عنوان :
منطق شهودي شناختي ديناميك: حساب رشته اي و تماميت آن نسبت به مدل هاي جبري و كاربردها
مقطع تحصيلي :
كارشناسي ارشد
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
صفحه شمار :
شش، [۵۰]ص.: مصور، جدول
استاد راهنما :
مجتبي آقايي
واژه نامه :
انگليسي به فارسي; فارسي به انگليسي
توصيفگر ها :
معناشناسي , حساب رشته اي , استدلال درباره ي سناريو
استاد داور :
مقداد قاري، محسن خاني
تاريخ ورود اطلاعات :
1397/04/02
چكيده انگليسي :
Intuitionistic Dynamic Epistemic Logic a Sequent Calculus an Algebraic Modal it s Completeness and Applications Samira Tayebi samira tayebi@math iut ac ir 2018 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr Mojtaba Aghai aghaei@cc iut ac ir 2010 MSC 05C15 53C42 Keywords Dynamic epistemic logic nested soundness completeness Abstract epistemic logics can express properties of programs and distributed system protocols The modal ities of epistemic logics encode attitudes such as knowledge and belief but dynamic changes to theseattitudes after actions such as announcements have traditionally been formalised only in a semanticfashion Adding epistemic modalities to dynamic logics led to logics allowing reasoning about beliefupdates both syntactically and semantically But lacking cut admissibility the calculus proposedin 4 is not a basis for automatic proof search As always the presence of a cut rule would ensurein nite non determinism in proof search so we have to avoid it its admissibility is however importantfor completeness Likewise we incorporate weakening and contraction into our logical rules whileensuring for completeness sake that they are admissible rather than having them as primitive thusreducing the non determinism even further Here we develop a cut free sequent calculus as basis fora proof search procedure for one such logic The logic comprises a linear logic Q of actions and a logic M of propositions The modalities ofthe logic include the dynamic modality known as the weakest precondition and its right adjoint the strongest postcondition We present an algebraic semantics for these logics in terms of a pairof a residuated lattice monoid of actions and its lattice of propositions We endow both Q and Mwith families of epistemic adjoint operators satisfying distributivity properties over the operations ofthe action logic propositional logic and their dynamic modalities We present appropriate sequentcalculus rules for these modalities we prove that the calculus is sound and complete w r t the
استاد راهنما :
مجتبي آقايي
استاد داور :
مقداد قاري، محسن خاني