شماره مدرك :
13843
شماره راهنما :
12581
پديد آورنده :
عباس زاده، اميرحسين
عنوان :

روشي جديد براي طراحي كنترل كننده فازي چندجمله‌اي مقاوم به منظور كاهش اثر اغتشاش مبتني بر تجزيه مجموع مربعات

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
كنترل
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده برق و كامپيوتر
سال دفاع :
۱۳۹۷
صفحه شمار :
ده، ۷۱ص.: مصور، نمودار
استاد راهنما :
فريد شيخ الاسلام
توصيفگر ها :
مدل فازي چندجمله‌اي , مدل فازي تاكاگي- سوگنو , روش جبران‌ساز موازي توزيع شده , تجزيه‌ي مجموع مربعات , پايداري , پايداري مقاوم , روش بهينه‌سازي ‎كمينه - بيشينه‏‏ , كاهش اثر اغتشاش , غيرخطينگي قطاعي و قوانين فازي
استاد داور :
جواد عسگري مارناني
تاريخ ورود اطلاعات :
1397/06/25
كتابنامه :
كتابنامه
رشته تحصيلي :
برق و كامپيوتر
دانشكده :
مهندسي برق و كامپيوتر
كد ايرانداك :
ID12581
چكيده انگليسي :
A New Approach to Design a Robust Polynomial Fuzzy Controller for Disturbance Rejection Based on SOS Approach Amirhosein Abaszade a abaszade@ec iut ac ir May 5 2018 Department of Electrical and Computer Engineering Isfahan University of Technology Isfahan 84156 83111 Iran Degree M Sc Language Farsi Supervisor Prof Farid Sheykholeslam sheikh@cc iut ac ir Abstract In this thesis after the general introduction of the Takagi Sugeno fuzzy model we study the polynomial fuzzymodel The membership functions and state matrices of each subsystem of the Takagi Sugeno model are obtainedusing a sector nonlinearity method The stability theorems are based on linear matrix inequality problems Thecontroller is constructed in this model with distributed parallel compensator A polynomial fuzzy model of thetheory is the generalization of the Takagi Sugeno model which in its later part are polynomial functions matri ces Also its stability conditions are based on the sum of squares equations and the controller in this model isobtained similarly to the Takagi Sugeno model of distributed equilibrium A polynomial fuzzy model using thesum of squares method has better stability conditions than the Takagi Sugeno model and also works better withpolynomials in dealing with complex systems and provides a simpler result Since the sum of squares method like the linear inequality of matrices is a convex optimization problem it is impossible to work with anomalousconditions for example bilinear conditions in this thesis the methods that have so far been used to solve thisproblem Introducing the problem also introducing a theorem and an algorithm to reduce the disturbance e ecton the system output The distinction between the algorithms introduced in this thesis and other similar tasksis to eliminate all the conservatism as well as to provide a path to address the need for an explicit mathematicalrelation Key Words Polynomial fuzzy T S fuzzy PDC SOS approach Stability Robuststability Min Max optimization Disturbance rejection Sector nonlinearity
استاد راهنما :
فريد شيخ الاسلام
استاد داور :
جواد عسگري مارناني
لينک به اين مدرک :

بازگشت