پديد آورنده :
عمراني منش، محسن
عنوان :
ديناميك مركزي كنترل شده و خطي سازي سيستم هاي زمان پيوسته توسط بازخورد حالت
مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
رياضي كاربردي
محل تحصيل :
اصفهان : دانشگاه صنعتي اصفهان
صفحه شمار :
شش، [۷۹]ص.: مصور
استاد مشاور :
رضا رضاييان فراشاهي
واژه نامه :
انگليسي به فارسي; فارسي به انگليسي
توصيفگر ها :
ديناميك مركزي كنترل شده , خطي سازي سيستم هاي زمان پيوسته , بازخورد حالت
استاد داور :
مجيد سلامت، رضا مزروعي سبداني
تاريخ ورود اطلاعات :
1397/11/02
چكيده انگليسي :
The controlled center dynamic andlinearization of continuous time systems by state feedback ohsen Omranimanesh M m omranimanesh@math iut ac ir 2019 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr Majid Gazor mgazor@cc iut ac ir Advisor Dr Reza Rezaeian Farashahi farashahi@cc iut ac ir 2010 MSC 05C15 53C42 Keywords center dynamics controlled stabilizability approximation feedback continuous timesystem linearization center manifold AbstractThe positivity and linearization of a class of nonlinear continuous time system by nonlinear statefeedbacks are addressed Necessary and sufficient conditions for the positivity of the class of nonlinearsystems are established A method for linearization of nonlinear systems by nonlinear state feedbacksis presented It is shown that by a suitable choice of the state feedback it is possible to obtain anasymptotically stable and controllable linear system when the closed loop system is positive it isunstable Center manifold theory plays an important role in the study of the stability of dynamicalsystems when the equilibrium point is not hyperbolic The center manifold is an invariant manifold ofthe differential equation which is tangent at the equilibrium point to the eigenspace of the neutrallystable eigenvalues For instance as the local dynamic behavior transverse to the center manifold isrelatively simple since it is the one of the flows in the local stable and unstable manifolds the centermanifold method isolates the complicated asymptotic behavior by locating an invariant manifoldtangent to the subspace spanned by the eigenspace of eigenvalues on the imaginary axis In practice one does not compute the center manifold and its dynamics exactly since this requires the resolutionof a quasi linear PDE which is not easily solvable In most cases of interest an approximation ofdegree two or three of the solution is sufficient Then we determine the reduced dynamics on the
استاد مشاور :
رضا رضاييان فراشاهي
استاد داور :
مجيد سلامت، رضا مزروعي سبداني