شماره مدرك :
14854
شماره راهنما :
13367
پديد آورنده :
رحمان نژاد، فاروق
عنوان :

كنترل اكسترمم‌ ياب زمان گسسته با نرخ بروز رساني كران‌دار

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
كنترل
محل تحصيل :
اصفهان : دانشگاه صنعتي اصفهان
سال دفاع :
1398
صفحه شمار :
ده، 55ص. : مصور، جدول، نمودار
استاد راهنما :
محسن مجيري، جواد عسگري
توصيفگر ها :
كنترل اكسترمم‌ياب , اكسترمم‌ياب كران‌دار زمان گسسته , معدل‌گيري زمان گسسته , تحليل پايداري
استاد داور :
جعفر قيصري، مرضيه كمالي
تاريخ ورود اطلاعات :
1398/05/13
كتابنامه :
كتابنامه
رشته تحصيلي :
مهندسي برق
دانشكده :
مهندسي برق و كامپيوتر
تاريخ ويرايش اطلاعات :
1398/05/14
كد ايرانداك :
2551545
چكيده انگليسي :
Discrete Time Extremum Seeking with Bounded Update Rate Faroogh Rahmannezhad f220 rahmannejad@gmail com July 1 2019 Department of Electrical and Computer Engineering Isfahan University of Technology Isfahan 84156 83111 Iran Degree M Sc Language Farsi Supervisors Prof Mohsen Mojiri mohsen mojiri@cc iut ac ir Prof Javad Askari j askari@cc iut ac ir Abstract Extremum seeking control ESC is a non model real time for tuning parameters to optimize an unknown nonlinearmap Gradient extremum seeking control and bounded update rate extremum seeking control or shortly bounded extremumseeking control are two main structures of extremum seeking control In gradient extremum seeking control sinusoidalsignals are used to estimate the gradinet of the map to be optimized In bounded extremum seeking control unknownfunction that is being optimzed appears as the argument of a sine cosine function The stability analysis of both structuresare carried out by appropriate change of variables and using the continuous time version averaging theorem Also in each ofthese structures the convergence rate to extremum point is depend on the Hessian matrix of unknown function Therefore the convergence rate is not adjustable Both of extremum seeking control structures have been modified such that to be ableto estimate the Hessian of unknown function Therefore Newton based extremum seeking control is proposed On the otherhand discrete time extremum seeking control structures have been considered by researchers In this regard the discretetime form of gradient extremum seeking is proposed In this research the discrete time form of bounded extremum seekingcontrol has been proposed The stability analysis of the proposed scheme is carried out using the discrete time version ofthe averaging theorem that in comparison with stability analysis continuous time bounded extremum seeking is much morecomplicated This complexity comes from difficulty in choosing the change of variables transforming the proposed schemeto the standard form of averaging theorem While for the continuous time bounded extremum seeking it is easy to reachthe standard form of the continuous time version of averaging theorem In the following the discrete time quasi Newtonextremum seeking is proposed This structure has the ability to estimate the Hessian of the unknown mapping which makesthe convergence rate to the extremum point independent of the Hessian The stability analysis of this structure also has itscomplexity At the end as an application of the proposed discrete time bounded extremum seeking a solution to the LQproblem is proposed Key Words Extremum Seeking Control Discrete Time Bounded Extremum Seeking Control Dis crete time Averaging Stability Analysis
استاد راهنما :
محسن مجيري، جواد عسگري
استاد داور :
جعفر قيصري، مرضيه كمالي
لينک به اين مدرک :

بازگشت