شماره مدرك :
14871
شماره راهنما :
13382
پديد آورنده :
همت يار طباطبايي، يحيي
عنوان :

همگامي مدل كوراموتوي مرتبه‌ي دوم در شبكه هاي پيچيده

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
ماده چگال
محل تحصيل :
اصفهان : دانشگاه صنعتي اصفهان
سال دفاع :
1398
صفحه شمار :
نه، 69ص.: مصور (رنگي)، جدول، نمودار
استاد راهنما :
فرهاد شهبازي
استاد مشاور :
مجتبي اعلايي
توصيفگر ها :
همگام سازي , مدل كوراموتوي مرتبه دو , نوسانگرهاي فاز , شبكه تصادفي , شبكه منظم , شبكه جهان كوچك , شبكه توري
استاد داور :
فرهاد فضيله، مهدي عبدي
تاريخ ورود اطلاعات :
1398/05/14
كتابنامه :
كتابنامه
رشته تحصيلي :
فيزيك
دانشكده :
فيزيك
تاريخ ويرايش اطلاعات :
1398/05/15
كد ايرانداك :
2551926
چكيده انگليسي :
AbstractSyn ronization is one of the beauties of nature whi has been seen in the collective behavior of com plex physical emical and biological systems Neural networks social interactions and the Internetare examples of complex systems that coupled By looking at the overall behavior of these systems theycan be considered as graphs whi their dynamic elements are vertices of this graph and their weaklinks are graph edges One common approa to examining the syn ronization is to consider system elements as phase os cillators with a weak coupling coe cient In fact syn ronization is the tuned tra of these oscillators Along with the many models that have been presented in the past to examine this phenomenon one ofthe easiest and most comprehensive models is the Kuramoto model In most of the previous studies the rst order model was used to investigate this subject Taking intoaccount the results presented by this model the syn ronization occurs a li le faster than experimen tal observations in nature and biological samples su as re y creams e idea that completing thismodel with a damping and also inertia as a factor in anging the frequency of oscillator movement caused suggestion of second order Kuramoto model In our study a variety of complex networks has been selected that can be modeled with biological net works In this thesis we rst reviewed the previous works by applying the rst order Kuramoto modelon a variety of networks en with the use of the second order Kuramoto model we studied the im pact of damping coe cient on the syn ronization of di erent networks and nally we evaluated thesystem s state in di erent conditions Key words Syn ronization Second order Kuramoto model Phase oscillators Random network Regular network Small network Grid network
استاد راهنما :
فرهاد شهبازي
استاد مشاور :
مجتبي اعلايي
استاد داور :
فرهاد فضيله، مهدي عبدي
لينک به اين مدرک :

بازگشت