پديد آورنده :
محمدرضايي، ريحانه
عنوان :
تخمين حالت در شبكه توزيع هوشمند با استفاده از حسگري فشرده
مقطع تحصيلي :
كارشناسي ارشد
محل تحصيل :
اصفهان : دانشگاه صنعتي اصفهان
صفحه شمار :
سيزده، 81ص. : مصور، جدول، نمودار
استاد راهنما :
مرضيه كمالي، جعفر قيصري
استاد مشاور :
غلامرضا يوسفي
توصيفگر ها :
شبكه توزيع هوشمند , حسگري فشرده , تخمين حالت , فيلتر كالمن غيرخطي , شناسايي توپولوژِي
استاد داور :
ايمان ايزدي، محمدامين لطيفي
تاريخ ورود اطلاعات :
1398/07/22
دانشكده :
مهندسي برق و كامپيوتر
تاريخ ويرايش اطلاعات :
1398/07/22
چكيده انگليسي :
State Estimation in Smart Distribution Grid Using Compressive Sensing Reyhane Mohammadrezaee r mohammad@ec iut ac ir August 2019 Department of Electrical and Computer Engineering Isfahan University of Technology Isfahan 84156 83111 Iran Degree M Sc Language Farsi Supervisors Dr Marzieh Kamali Dr Jafar Ghaisari Advisor Dr Gholamreza YousefiAbstract Nowadays with the drive towards smart power distribution grids and the improvements in monitoring and communi cations infrastructure distribution system state estimation has been receiving significant research interest The state vectorof the grid is composed of those electrical quantities which are costly or inaccessible to measure such as the voltage phasorat buses Network topology and transmitted measurements are needed in each state estimation process In this thesis byreducing the measurement data volume before transmission in addition to decreasing the required bandwidth problemssuch as lack of storage space interference and delay would be resolved Compressive sensing and separation of majorsingular values have been suggested to reduce the amount of power injection measurements with both online and offlineviews Then all power injection values are reconstructed from compressed measurements fed as inputs to the weighted leastsquare algorithm and a backward forward method to estimate states Moreover a technique has been proposed estimatingstates from compressed data directly without applying the compressive sensing reconstruction procedure Therefore lessstorage space would be needed while the sparse space of measurements does not need to be known Since the impact of themeasurements on the state estimation discontinuing data transmission would be decreased the accuracy of the estimationresults By proposing an approximate calculation of required quantities based on past measurements and using a nonlin ear Kalman filter the disadvantage of discontinuous data from meters over a long period of time would be reduced Theunknown switching operations cause topological changes and unreliable estimation results To solve the aforementionedissue a criterion independent of measurements has been proposed identifying the changing of a switch status Therefore this criterion can also be used in the state estimation based on compressed data without using reconstruction process Thesimulation results demonstrate that the proposed estimation method can detect switch status while estimating the state vectorwith high accuracy especially when a part of the grid is islanded Key Words 1 Smart distribution grid 2 Compressive sensing 3 State estimation 4 nonlinear Kalman filter 5 Topology identification
استاد راهنما :
مرضيه كمالي، جعفر قيصري
استاد مشاور :
غلامرضا يوسفي
استاد داور :
ايمان ايزدي، محمدامين لطيفي