شماره مدرك :
1554
شماره مدرك :
1621پ
شماره راهنما :
1617
پديد آورنده :
هاديان جزي، شهرام
عنوان :

طراحي بهينه رباتهاي موازي

مقطع تحصيلي :
كارشناسي ارشد( طراحي كاربردي )
محل تحصيل :
اصفهان : دانشگاه صنعتي اصفهان . دانشكده مكانيك
سال دفاع :
1379
صفحه شمار :
[سيزده ]، 124، ]I[ص .: مصور، جدول ، شكل ، عكس رنگي ، نمودار
يادداشت :
اساتيد مشاور: مصطفي غيور، حسن موسوي,استاد داور: حسن نحوي,چكيده به فارسي و انگليسي
استاد راهنما :
عباس فتاح
توصيفگر ها :
طراحي بهينه / رباتهاي موازي/ حجم فضاي كار/ ربات استوارت پلاتفرم / SPM/ تحليل سينماتيكي / سه درجه آزادي/ زاكوبين / شش درجه آزادي/ ربات موازي فضايي / ربات فضايي
دانشكده :
مهندسي مكانيك
كد ايرانداك :
ID1617
چكيده فارسي :
استفاده از رباتهاي موازي به علت خصوصيات مناسبي كه دارند، بسيار مورد توجه محققان و صاحبان صنايع قرار گرفته است . هرجا صحبت از سختي بار به وزن زياد، پايداري بالا و ... است ، رباتهاي موازي جايگاه مخصوصي دارند. به همين دليل تحقيقات فراواني در مورد اينگونه مكانيزمها صورت گرفته است و همچنان نيز ادامه دارد. از آنجا كه داشتن طرحي مناسب و بهينه هم از نظر صرفه جويي در هزينه و انرژي و هم از نظر خصوصيات يك ربات ، بسيار مقرون به صرفه است لذا، در اين پروژه به طراحي بهينه رباتهاي موازي مي پردازيم . در اين پايان نامه ، دو روش مختلف طراحي بهينه براي رباتهاي موازي مورد توجه قرار گرفته است . در روش اول ، سعي شده ربات داراي بيشترين فضاي كار ممكن ، بدون توجه به كيفيت و چگونگي آن فضا، باشد. براي اين كار ضمن ارائه تعريفي از فضاي كار كه هم موقعيت و هم وضعيت ربات را در برداشته باشد، با استفاده از روش عددي مونت كارلو به محاسبه حجم اين فضا پرداخته ايم . سپس با اضافه كردن خاصيت ايزوتروپي به فضاي كار، در روش دوم ، كيفيت فضاي كار را نيز در نظر گرفته ايم . به اين منظور ضمن تعريف شاخص شرط عمومي و با بيشينه كردن آن ، بيشترين فضايي را كه در آن ، عدد شرط ماتريس ژاكوبين ربات به يك ، حالت ايزوتروپيك ، نزديك باشد، پيدا كرده ايم . در اين روش نيز، براي محاسبه شاخص شرط عمومي از روش عددي مونت كارلو استفاده كرده ايم . اين دو روش براي بهينه سازي ربات موازي استوارت پلاتفرم و ربات موازي فضايي با سه درجه آزادي، مورد استفاده قرار گرفته و در پايان ، روش مناسب براي طراحي بهينه اين رباتها معرفي شده است .
استاد راهنما :
عباس فتاح
لينک به اين مدرک :

بازگشت