شماره مدرك :
16354
شماره راهنما :
1698 دكتري
پديد آورنده :
خودي زاده نهاري، محمد
عنوان :

بهبود صحت داده‌ها با مديريت تعارضات در تركيب داده‌هاي مكاني

مقطع تحصيلي :
دكتري
گرايش تحصيلي :
نرم افزار
محل تحصيل :
اصفهان : دانشگاه صنعتي اصفهان
سال دفاع :
1399
صفحه شمار :
سيزده، 144ص. : مصور، جدول، نمودار
استاد راهنما :
ناصر قديري
استاد مشاور :
احمد براآني دستجردي
توصيفگر ها :
تركيب داده‌ها , ريزدانگي داده‌ها , تشخيص موجوديت‌هاي يكسان , داده‌هاي مكاني
استاد داور :
مهران صفاياني، الهام محمودزاده
تاريخ ورود اطلاعات :
1399/12/17
كتابنامه :
كتابنامه
رشته تحصيلي :
كامپيوتر
دانشكده :
مهندسي برق و كامپيوتر
تاريخ ويرايش اطلاعات :
1399/12/18
كد ايرانداك :
2639076
چكيده انگليسي :
Improving Data Veracity by Conflict Resolution in Spatial Data Fusion Mohammad Khodizadeh Nahari m khodizadeh@ec iut ac ir 2020 10 21 Department of Electrical and Computer Engineering Isfahan University of Technology 84156 83111 Isfahan IranSupervisor Dr Nasser Ghadiri nghadiri@iut ac irAdvisor Dr Ahmad Baraani Dastjerdi ahmadb@eng ui ac irAdvisor Dr J rg R diger Sack sack@scs carleton caDepartment Graduate Program Coordinator Dr Behzad Nazari Department of Electrical and Computer Engineering Isfahan University of Technology Isfahan Iran Department of Software Engineering Faculty of Computer Engineering University of Isfahan Isfahan Iran School of Computer Science Carleton University Ottawa CanadaAbstractData utilization plays a vital role in the development of human societies Today the data are stored inheterogeneous sources Providing an integrated view by fusion of the data is essential to enhance data utilization Data quality is a challenging issue in the data fusion One of the main challenges that affects the quality is datainconsistency We worked on apparent inconsistencies that are caused by the difference in data representation Intelligent entity recognition improves the quality of data fusion and data veracity One of the weaknesses of theexisting methods is the lack of attention to the level of abstraction and granularity of the data in different sources In this research a framework is introduced for managing inconsistencies In addition a new metric for assessmentof granularity level of data is introduced GLQM In the framework using data granulation and knowledge bases increases data veracity The proposed algorithms belong to online category This is achieved with the help ofblocking technique An indispensable type of data is spatial data with diverse application By applying datagranulation approach on several methods in the field of spatial data the quality of data fusion based on the F Score has been improved KeywordsData fusion Data granulation Entity recognition Spatial dataIntroductionData utilization plays a vital role in the development of human societies The amount ofgenerated data increases dramatically every day The use of data from a single source oftenprovides limited actionable results In contrast fusing data from multiple sources would oftencreate significantly more value resulted from filling the weakness of a source in some datarecords by another source Data fusion techniques combine the data obtained from differentsources to produce a uniform and more accurate result compared with cases where they areutilized individually Hall and Llinas 1997 During the data fusion process the veracity andreliability of data can be enhanced through data inconsistency management
استاد راهنما :
ناصر قديري
استاد مشاور :
احمد براآني دستجردي
استاد داور :
مهران صفاياني، الهام محمودزاده
لينک به اين مدرک :

بازگشت