شماره مدرك :
16587
شماره راهنما :
14730
پديد آورنده :
مبيني‌پور، سحر
عنوان :

يك عملگر بستاري براي توپولوژي‌هاي باز-بسته

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
منطق و توپولوژي
محل تحصيل :
اصفهان : دانشگاه صنعتي اصفهان
سال دفاع :
1400
صفحه شمار :
هشت، 75 ص. : نمودار
استاد راهنما :
محمدرضا كوشش خواجويي، مجيد سلامت
استاد مشاور :
مصطفي عين‌اله زاده صمدي
توصيفگر ها :
عملگر بستاري , توپولوژي باز-بسته , توپولوژي ضعيف , فضاي از بعد صفر , خارج‌قسمت كلموگوروف , فضاي استون
استاد داور :
مجيد فخار، علي طاهري‌فر
تاريخ ورود اطلاعات :
1400/06/15
كتابنامه :
كتابنامه
رشته تحصيلي :
رياضي محض
دانشكده :
رياضي
تاريخ ويرايش اطلاعات :
1400/06/20
كد ايرانداك :
2720679
چكيده فارسي :
يك توپولوژي T روي يك مجموعه ي ناتهي X ،توپولوژي باز-بسته است درصورتي كه هر عضو T باز و بسته باشد. يك تابع f از X به Y مفروض است، عملگر E f^{-1}(f(E)) يك عملگر بستاري روي مجموعه ي تواني X است كه نقاط ثابت آن، زيرمجموعه هاي بسته ي متناظر با يك توپولوژي باز-بسته روي X هستند. برعكس، براي هر توپولوژي باز-بسته روي X، يك تابع f با دامنه ي X مي سازيم به طوريكه T = {E ⊆ X : E = f^{-1}(f(E))}. توپولوژي هاي باز-بسته روي X را به عنوان توپولوژي هاي ضعيف توليدشده توسط يك تابع پوشا با مقاديري در يك فضاي توپولوژيك گسسته مشخص مي كنيم. به موازات اين نتيجه، نشان مي دهيم كه يك توپولوژي يك پايه ي باز-بسته را مي پذيرد اگر و تنها اگر يك توپولوژي ضعيف توليدشده توسط خانواده اي از توابع با مقاديري در فضاهاي گسسته باشد.
چكيده انگليسي :
A topology T on a nonempty set X is collection of subsets of X having the empty set ∅ and the set X themselves, which is closed under taking arbitrary unio‎n and finite intersection of its elements. Members of a topology on X are called open subsets of X and complements of open subsets of X are called closed subsets of X. A topology on X is called a clopen topology provided that each member of T is both open and closed in X. A function Γ : P(X) → P(X) is called a closure operator (also called a Kuratowski closure operator) if it satisfies the following four properties: • Γ(∅) = ∅; • E ⊆ Γ(E) for every E ⊆ X; • Γ(Γ(E)) = Γ(E) for every E ⊆ X; • Γ(E) ∪ Γ(F) = Γ(E ∪ F) for every E, F ⊆ X. If Γ : P(X) → P(X) is a closure operator, the fixed points of Γ, that is, the collection of all subsets of X such that Γ(E) = E is the collection of closed subsets of some topology on X corresponding the closure operator Γ. Observe that for a mapping f from X to Y , the operator E → f^{-1}(f(E))1 defined on the power set of X, defines a closure operator. Indeed, it is easy to show that the complement of each set E satisfying E = f^{-1}(f(E)) also satisfies this property. In other words, the fixed points of this closure operator are closed subsets corresponding to a clopen topology on X. On the other hand, for every clopen topology T on X one can define a mapping f on X (to some set Y ) such that the topology of X coincides with the topology which is induced by the closure operator corresponding to the mapping f, that is, we have T = {E ⊆ X : E = f^{-1}(f(E))}. In this thesis we consider the clopen topologies on a set X. Indeed, we characterize the clopen topologies on a set X as those that are weak topologies determined by surjective mappings with values in some discrete topological space (that is, spaces whose collection of open sets is the whole power set). In other words, for a given clopen topology on X we find a surjective mapping with values in some discrete topological space such that the given clopen topology on X coincides with the smallest topology on X which makes the mapping f continuous. In addition, we show that a topology admits a clopen base (that is an open base for a topology whose elements are clopen subsets) if and only if it is a weak topology determined by a family of functions with values in discrete spaces.
استاد راهنما :
محمدرضا كوشش خواجويي، مجيد سلامت
استاد مشاور :
مصطفي عين‌اله زاده صمدي
استاد داور :
مجيد فخار، علي طاهري‌فر
لينک به اين مدرک :

بازگشت