شماره مدرك :
17064
شماره راهنما :
15104
پديد آورنده :
اسدي، مائده
عنوان :

الگوريتم هايي براي ﯾﺎﻓﺘﻦ زﯾﺮﮔﺮاف ﻣﮑرﺮ در ﮔﺮاف ﮐاوي

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
رياضي كاربردي
محل تحصيل :
اصفهان : دانشگاه صنعتي اصفهان
سال دفاع :
1400
صفحه شمار :
هشت،‌ [79]ص. : مصور، جدول
استاد راهنما :
بهناز عمومي
استاد مشاور :
ريحانه ريخته گران
واژه نامه :
واژه نامه
توصيفگر ها :
داده كاوي , زيرگراف كاوي , زيرگراف مكرر , رابط , مجموعه اقلام
استاد داور :
رامين جوادي، غلامرضا اميدي
تاريخ ورود اطلاعات :
1400/11/04
كتابنامه :
كتابنامه
رشته تحصيلي :
رياضي
دانشكده :
رياضي
تاريخ ويرايش اطلاعات :
1400/11/05
كد ايرانداك :
2799682
چكيده فارسي :
ﯽﻃ ﺳﺎل ﻫﺎي ﮔﺬﺷﺘﻪ داده ﮐﺎوي، ﯾﻌﯽﻨ ﻓﺮآﯾﺪﻨ ﯾﺎﻓﺘﻦ و اﺳﺘﺨﺮاج اﻃﻼﻋتﺎ ﻣﻔﺪﯿ و اﻟﮕﻮﻫﺎي ﺟﺎﺐﻟ زا ﺣﺠﻢ اﻧﺒﻮﯽﻫ زا داده ﻫﺎ، ﻪﺑ ﻋﻨﻮان ﮏﯾ زﻣﯿﻨﮥ ﺗﺤﻘﯿﻖ و ﺗﻮﺳﻌﻪ دﻫﻨﺪۀ ﺑﺮﻧﺎﻣﻪ ﻫﺎي ﮐﺎرﺑﺮدي رد زﻧﺪﮔﯽ واﻗﻌ،ﯽ ﻣﻮدر ﺗﻮﻪﺟ .ﻗﺮرا ﮔﺮﻓﺘﻪ اﺳ.ﺖ رد ﻋﻠﻢ داهد ﺑﯿﺸﺘﺮ داده ﻫﺎﯽﯾ ﻪﮐ ﺎﺑ آﻧﺎﻬ ﺳﺮوﮐرﺎ دارﯾﻢ ﻣﯽ ﺗﻮاﻧﺪﻨ رد ﻗﺎﺐﻟ ﮏﯾ ﮔﺮفا ﻣﺪل ﺷﻮﺪﻧ ﮔﺮاف ﺎﻫ رد ﻣﺪل ﺳﺎيز و ﻧﻤﺎﯾﺶ اﻃﻼﻋتﺎ ﺑﺴﯿﺎر ﻗﺎﻞﺑ اﻫﻤﯿﺖ ﻫﺴﺘﻨ.ﺪ ﮏﯾ ﮔﺮفا ﻪﺑ ﻋﻨﻮان ﮏﯾ ﺳﺎﺧﺘرﺎ ﮐﻠﯽ زا داده ﻫﺎ، ﻣﯽ ﺗﻮاﻧﺪ ﺑﺮيا ﻣﺪل ﺳﺎيز ﺑﺴﯿﺎير زا رواﺑﻂ ﭘﯿﭽﯿهﺪ رد ﺑﯿﻦ داده ﺎﻫ اﺳﺘﻔﺎده ﺷﻮ.د ﮐﺎرﺑدﺮ اﺻﯽﻠ ﻧﻈﺮﯾﮥ ﮔﺮفا رد داده ﮐﺎوي، ﮔﺮاف ﮐﺎيو اﺳ.ﺖ ﯾﮑﯽ زا ﻣﻬﻤﺘﺮﯾﻦ ﻣﻔﺎﻫﻢﯿ رد ﮔﺮاف ﮐﺎيو ﭘﯿاﺪ ﮐﺮند زﯾﺮﮔﺮاف ﻫﺎي ﺗﮑﺮاير ﺎﯾ .ﻣﮑرﺮ اﺳ.ﺖ اﯾﻦ ﮔﺮاف ﺎﻫ ار ﻣﯽ ﺗﻮنا ﺎﺑ اﺳﺘﻔﺎده زا اﻟﮕﻮرﯾﺘﻢ ﺎﻫ و روش ﻫﺎي ﻣﻮﺟﻮد رد ﻧﻈﺮﯾﮥ ﮔﺮاف، اﺳﺘﺨﺮاج ﮐﺮد ﻣﻬﻤﺘﺮﯾﻦ ﻣﺰﺖﯾ اﺳﺘﻔﺎده زا زﯾﺮﮔﺮاف ﺎﻫ ﺳﺮﺖﻋ ﺑﺨﺸﯿنﺪ ﻪﺑ ﺟﺴﺘﺠﻮ و ﯾﺎﻓﺘﻦ ﺷﺒﺎﻫﺖ ﺎﻫ و ﻣﺸﺨﺼتﺎ ﮔﺮاف ﺎﻫ و .ﻃﺒﻘﻪ ﺑﻨيﺪ آﻧﺎﻬ اﺳﺖ اﻟﮕﻮرﯾﺘﻢ ﻫﺎي داده ﮐﺎيو رد ﮔﺮفا ﻪﺳ روﯾﮑدﺮ ﯾﺎدﮔﯿﺮي ﻣﺨﺘﻠﻒ ار دﻧﺒﺎل ﻣﯽ ﮐﻨ.ﺪ ﯾﺎدﮔﯿﺮي ﺎﺑ ﻧﻈﺎر،ت ﻪﮐ ﺎﺑ ﻣﺠﻤﻮﻋﻪ ﻫﺎﯽﯾ زا ﻣﺜﺎل ﺎﻫ ﺎﺑ ﺑﺮﭼﺴﺐ ﻣﺸﺺﺨ ﮐﺎر ﻣﯽ ﮐﻨ.ﺪ )ﺑﺮﭼﺴﺐ ﺎﻫ ﻣﯽ ﺗﻮاﻧﺪﻨ ارشز اﺳﯽﻤ رد ﺣﺎﺖﻟ ﻃﺒﻘﻪ ﺑﻨيﺪ و ارشز ﻋﺪيد رد ﺣﺎﺖﻟ رﮔﺮﺳﯿﻮن داﺷﺘﻪ ﺑﺎﺷﺪ.( ﯾﺎدﮔﯿﺮي ﺑﺪنو ﻧﻈﺎر،ت ﻪﮐ ﺑﺮﭼﺴﺐ ﻫﺎي ﻧﻤﻮﻧﻪ ﺎﻫ رد ﻣﺠﻤﻮﮥﻋ .داهد ﻧﺎﻣﺸﺺﺨ اﺳ؛ﺖ و اﻟﮕﻮرﯾﻢﺘ ﺗﻼش ﻣﯽ ﮐﻨﺪ ﻪﮐ ﻧﻤﻮﻧﻪ ﺎﻫ ار ﺮﺑ اﺳسﺎ ﺷﺒﺎﻫﺖ وﯾﮋﮔﯽ ﻫﺎﯾﺸنﺎ ﮔﺮوه ﺑﻨيﺪ ﮐﻨﺪ رد ﻧﻬﺎﯾﺖ ﯾﺎدﮔﯿﺮي ﻧﯿﻤﻪ ﻧﻈﺎرﺗﯽ، زﻣﺎﻧﯽ اﺳﺘﻔﺎده ﻣﯽ ﺷﻮد ﻪﮐ زﯾﺮﻣﺠﻤﻮﻋﻪ ﻫﺎي ﮐﻮﭼﮑﯽ زا ﻧﻤﻮﻧﻪ ﻫﺎي ﺑﺮﭼﺴﺐ دار ﺎﺑ .ﺗﻌﺪاد زﯾﺎدي زا ﻧﻤﻮﻧﻪ ﻫﺎي ﺑﺪنو ﺑﺮﭼﺴﺐ ﻣﻮﺟﻮد ﺑﺎﺪﺷ ﮏﯾ ﺗﺎﻊﺑ اﺳ.ﺖ ﺑﺮيا 2 I ﻣﺠﻤﻮﻪﻋ اﻗمﻼ و I ﮔ،ﺮفا ﺑﺮيا ﺳﻪ ﺗﺎﯽﯾ ار راﻂﺑ ﻣﯽ ﻧﺎﻣﯿﻢ اﮔﺮ )(1 زﯾﺮﮔﺮاف اﻟﻘﺎﯽﯾ ﮏﯾ زﯾﺮﻣﺠﻤﻮﻋﮥ رﺋسﻮ . ﺎﯾ ﻧﺎﻫﻤﺒﻨﺪ ﺑﺎﺪﺷ ﺎﯾ ﻫﻤﺒﻨﺪ ﺑﺎﺪﺷ )(2 ﺑﺮيا ﺗﻤﺮﮐﺰ اﺻﯽﻠ اﯾﻦ ﭘﺎﯾﺎن ﻧﺎﻣﻪ، ﺑﯿنﺎ اﻟﮕﻮرﯾﺘﻢ ﻫﺎﯽﯾ ﺑﺮيا ﯾﺎﻓﺘﻦ راﺑﻂ ﻫﺎﺖﺳ ﻪﮐ رد نآ زا زﯾﺮﮔﺮاف ﻣﮑرﺮ اﺳﺘﻔﺎده ﺷﺪه است.
چكيده انگليسي :
Dataminingiscomprisedofmanydataanalysistechniques. Itsbasicobjectiveistodiscoverthehiddenandusefuldata patternfromverylargesetofdata. Graphmining,whichhasgainedmuchattentioninthelastfewdecades,isoneofthe novelapproachesforminingthedatasetrepresentedbygraphstructure. Graphminingfindsitsapplicationsinvarious problem domains, including: bioinformatics, chemical reactions, Program flow structures, computer networks, social networks etc. Different data mining approaches are used for mining the graph based data and performing useful analysis on these mined data. Graph mining techniques have been categorized into following groups. (1) Graph clustering; is the task of grouping the vertices of the graph into clusters taking into consideration the edge structure of the graph in such a way that there should be many edges within each cluster and relatively few between the clusters? Graph clustering in the sense of grouping thevertices of a given input graph into clusters graph clustering is based on unsupervised learning technique in which the classes are not known in prior to clustering. The graph clusters are formed based on some similarities in the underlying graph structured data graph. (2) Graph Classification; in graph classification the main task is to classify separate, individual graphs in a graph database into two or more categories/classes. Classification is based on supervised/semi supervised learning technique in which the classes of the data are defined in prior. (3) Sub graph mining; sub graph is a graph whose vertices and edges are subsets of another graph. The frequent sub graph mining problem is to produce the set of sub graphs occurring in at least some given threshold of the given n input example graphs. In this thesis,is considered the graph mining problem of enumerating what we call connectors. Suppose that given a data set (G,I,σ) that consists of a graph , an item set I , and a function we define . A vertex subset X is called a connector if (i) the subgraph G[X] induced from G by X is connected; and (ii) for any ] is disconnected or . To enumerate all connectors,it has been proposed a novel algorithm named COOMA (components overlaid mining algorithm). The algorithm mines connectors by “overlaying” an already discovered connector on a certain subgraph of G iteratively. By overlaying, it mean taking an intersection between the connector and connected components of a certain induced subgraph. Interestingly, COOMA is a total-polynomial time algorithm, i.e., the running time is polynomially bounded with respect to the input and output size.
استاد راهنما :
بهناز عمومي
استاد مشاور :
ريحانه ريخته گران
استاد داور :
رامين جوادي، غلامرضا اميدي
لينک به اين مدرک :

بازگشت