شماره مدرك :
19044
شماره راهنما :
16520
پديد آورنده :
طاهري، فاطمه
عنوان :

تجزيه مقدار تكين تانسوري مرتبه بالاتر براي تانسورهاي مبتني برضرب تانسور در تانسور

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
آناليز عددي
محل تحصيل :
اصفهان : دانشگاه صنعتي اصفهان
سال دفاع :
1402
صفحه شمار :
هفت، 54ص. : مصور، جدول، نمودار
توصيفگر ها :
ضرب تانسور , ضرب تانسور‑تانسور , تجزيه تانسور , تجزيه مقادير تكين تانسور , تجزيه مقادير تكين مرتبه بالا
تاريخ ورود اطلاعات :
1402/08/29
كتابنامه :
كتابنامه
رشته تحصيلي :
رياضي كاربردي
دانشكده :
رياضي
تاريخ ويرايش اطلاعات :
1402/09/01
كد ايرانداك :
2982802
چكيده فارسي :
در اين پايان‌نامه روشي براي تعميم تجزيه مقادير تكين تانسورها (T-SVD) از تانسورهاي لوله‌اي يا مرتبه 3 به تانسورهاي مرتبه دلخواه N بررسي مي‌شود كه به آن Hot-SVD گفته‌شده و براساس ضرب تانسور-تانسور به ‌دست مي‌آيد. همچنين براي اثبات وجود آن، ترانهاده t-كوچك تعريف مي‌شود كه به‌دليل تشكيل پيوند ميان تانسورهاي لوله‌اي و ماتريس‌هاي لوله‌اي، اهميت زيادي دارد.سپس ويژگي‌هاي Hot-SVD بررسي مي‌شود و Hot-SVD بريده‌شده و به‌طور دنباله‌اي بريده‌شده تعريف مي‌گردد. در آخر با ارائه مثال عددي، نتايج به‌دست آمده مورد بحث و بررسي قرارمي‌گيرد.
چكيده انگليسي :
IAbstract: The exponential augment and availability of the world’s data have led to the popularity of tensor decomposition and approximation research. Indeed, encoding these data in a tensor-based format enables us to exploit their innate multidimensional features. Tensor decomposition has acquired more significance in theoretical and applied mathematics in the past several years. Tensors play a conspicuous role in diverse applications, such as signal processing, machine learning, biomedical engineering, neuroscience, computer vision, communication, psychometrics, and chemistry. They can provide a concise mathematical framework for formulating and solving problems in these fields. However, there are still impediments to making tensor computations as practical as matrix computations. Recently, higher-order t-singular value decomposition (Hot-SVD) has come up and given due consideration. The Hot-SVD, also known as Higher-Order Singular Value Decomposition (HOSVD), is a decomposition that represents a tensor-tensor product variant. Broadly speaking, Hot-SVD finds innumerable uses in physics and engineering mathematics in tensor-type data processing. In particular, image and video processing are among the disciplines where abbreviated hot-SVD algorithms are most critical. In addition, t-product is a type of multiplication between tensors whose framework has created a leap in theoretical and applied research activities in recent years and has had notable ramifications in matrix algebra. To study Hot-SVD, we concentrate on tensor singular value decomposition (t-SVD) and tensor-tensor product in this thesis. Concerning this matter, we investigate the extension of the t-SVD of third-order tensors to arbitrary order N tensors, which correspond to order (N-1) tubal tensors. This extension varies from the t-SVD for tensors with orders more than three. This thesis boils down to follows. Firstly, this thesis includes some background information on the tensor-tensor product of third-order tensors. Next, we outline a few fundamental ideas we will require throughout the thesis. These definitions include the Fourier series, Hilbert matrix, and singular value decomposition. Additionally, we describe the most crucial products, such as the Hadamard, face-wise, and tensor products, which are necessary to demonstrate the theorems. We also indicate the Eckart-Young theorem for tubal matrices. Then, well-known concepts and results from matrices, such as the Kronecker product, are extended to tubal matrices, and the Hot-SVD model for tubular tensors is analyzed. Moreover, the existence of the Hot-SVD is ascertained, and several properties, including orthogonality and order related to the HOSVD, are established. Afterward, the truncated Hot-SVD, the sequentially truncated Hot-SVD, and their error bounds are determined. Likewise, we examine the computational complexity of Hot-SVD, truncated Hot-SVD, and sequentially truncated Hot-SVD. We consider a numerical example to assess Seq-tr-Hot-SVD, tr-Hot- SVD, Seq-tr-HOSVD, and tr-HSVD algorithms. This example’s outcome reveals that, in terms of reconstruction error, tr-Hot-SVD and Seq-tr-Hot-SVD perform better. Since the tubal versions need to execute additional Fourier transforms, seq-tr-HOSVD is the fastest based on CPU time; nevertheless, tr-HOSVD and seq-tr-HOSVD are slower than seq-tr-HOSVD and seq-tr-HOSVD. Furthermore, compared to tr-Hot-SVD, seq-tr-Hot-SVD is roughly two to four times faster. Finally, the appendix concludes with an overview of image processing, which is consequential in many situations involving artificial intelligence, machine learning, and pattern recognition. Isfahan University
استاد راهنما :
رضا مختاري
استاد مشاور :
محمود منجگاني
استاد داور :
رامين جوادي , رسول عاشقي حسين آبادي
لينک به اين مدرک :

بازگشت