توصيفگر ها :
مناﺑﻊ ﺫﺧﻴﺮﻩ ﻛﻨﻨﺪﻩ ﺍﻧﺮﮊﻱ , ﻳﻜﺴﺎﻥ ﺳﺎﺯ ﺳﻄﺢ ﻭﻟﺘﺎﮊ ﺑﺎﺗﺮﻱ , ﻣﺪﺍﺭﻣﺠﺘﻤﻊ , ﻣﺒﺪﻝ ﺭﺯﻭﻧﺎﻧﺲ ﺳﺮﻱ , ﻛﻠﻴﺪﺯﻧﻲ ﻧﺮﻡ , ﻛﻨﺘﺮﻝ ﻓﺮﻛﺎﻧﺲ ﺣﻠﻘﻪ ﺑﺴﺘﻪ
چكيده فارسي :
ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﮔﺴﺘﺮﺵ ﺗﻜﻨﻮﻟﻮﮊﻱ ﻭ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻭﺳﻴﻠﻪ ﻫﺎﻱ ﺍﻟﻜﺘﺮﻳﻜﻲ ﺩﺭ ﺯﻧﺪﮔﻲ ﺭﻭﺯﻣﺮﻩ، ﺫﺧﻴﺮﻩ ﺳﺎﺯﻱ ﺍﻧﺮﮊﻱ ﺑﻪ ﺍﻣﺮﻱ ﺿﺮﻭﺭﻱ ﺗﺒﺪﻳﻞ ﺷﺪﻩ ﺍﺳﺖ. ﺑﻪ ﻋﻼﻭﻩ ﺟﺎﻳﮕﺰﻳﻨﻲ ﻣﻨﺎﺑﻊ ﺍﻧﺮﮊﻱ ﭘﺎﻙ ﺑﻪ ﺟﺎﻱ ﻣﻨﺎﺑﻊ ﺗﺠﺪﻳﺪﻧﺎﭘﺬﻳﺮ ﺳﺒﺐ ﺷﺪﻩ ﺍﺳﺖ ﺗﺎ ﻭﺍﺑﺴﺘﮕﻲ ﺑﻪ ﻣﻨﺎﺑﻊ ﺫﺧﻴﺮﻩ ﻛﻨﻨﺪﻩ ﺍﻧﺮﮊﻱ ﺭﻭ ﺑﻪ ﺍﻓﺰﺍﻳﺶ ﺑﺎﺷﺪ ﺯﻳﺮﺍ ﻣﻨﺎﺑﻊ ﺍﻧﺮﮊﻱ ﭘﺎﻙ ﻣﺎﻧﻨﺪ ﺍﻧﺮﮊﻱ ﺧﻮﺭﺷﻴﺪﻱ ﻭ ﺑﺎﺩﻱ ﺑﻪ ﻃﻮﺭ ﭘﻴﻮﺳﺘﻪ ﻭﺟﻮﺩ ﻧﺪﺍﺭﺩ ﻭ ﻧﻴﺎﺯ ﺍﺳﺖ ﺗﺎ ﺍﻧﺮﮊﻱ ﺗﻮﻟﻴﺪﻱ ﺩﺭ ﻳﻚ ﻣﻨﺒﻊ ﺫﺧﻴﺮﻩ ﺳﺎﺯ ﺍﻧﺮﮊﻱ ﻣﺎﻧﻨﺪ ﺑﺎﺗﺮﻱ ﺫﺧﻴﺮﻩ ﺷﻮﺩ. ﺍﺯ ﺍﻳﻦ ﺭﻭ ﺑﺎﺗﺮﻱ ﺑﻪ ﻋﻨﻮﺍﻥ ﻳﻚ ﻣﻨﺒﻊ ﺫﺧﻴﺮﻩ ﻛﻨﻨﺪﻩ ﺍﻧﺮﮊﻱ ﺩﺭ ﻛﺎﺭﺑﺮﺩﻫﺎﻱ ﻣﺨﺘﻠﻔﻲ ﺍﺯ ﻗﺒﻴﻞ ﻭﺳﺎﻳﻞ ﺍﻟﻜﺘﺮﻳﻜﻲ، ﺻﻨﻌﺘﻲ ﻭ ﻣﺴﻜﻮﻧﻲ ﺑﺴﻴﺎﺭ ﻣﻮﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ ﻗﺮﺍﺭ ﮔﺮﻓﺘﻪ ﺍﻧﺪ. ﺑﻪ ﻣﻨﻈﻮﺭ ﻓﺮﺍﻫﻢ ﻧﻤﻮﺩﻥ ﻣﻨﺒﻊ ﺍﻧﺮﮊﻱ ﺑﺎ ﻗﺎﺑﻠﻴﺖ ﻭﻟﺘﺎﮊﻫﺎ ﻭ ﺗﻮﺍﻥ ﻫﺎﻱ ﺑﺎﻻ ﻧﻴﺎﺯ ﺍﺳﺖ ﺗﺎ ﺳﻠﻮﻝ ﻫﺎﻱ ﺑﺎﺗﺮﻱ ﺑﻪ ﺻﻮﺭﺕ ﻫﺎﻱ ﻣﺨﺘﻠﻒ ﻧﻈﻴﺮ ﺳﺮﻱ ﻭ ﻣﻮﺍﺯﻱ ﺑﻪ ﻳﻜﺪﻳﮕﺮ ﻣﺘﺼﻞ ﺷﻮﻧﺪ. ﺑﻪ ﺩﻟﻴﻞ ﺍﺧﺘﻼﻑ ﺩﺭ ﻣﺸﺨﺼﺎﺕ ﺩﺍﺧﻠﻲ ﺳﻠﻮﻝ ﻫﺎ ﻭ ﻧﻴﺰ ﺍﻓﺰﺍﻳﺶ ﺣﺮﺍﺭﺕ ﺑﻪ ﺻﻮﺭﺕ ﭘﺮﺍﻛﻨﺪﻩ ﺩﺭ ﺁﻧﻬﺎ، ﺳﻄﻮﺡ ﻭﻟﺘﺎﮊ ﺳﻠﻮﻝ ﻫﺎﻱ ﻣﺨﺘﻠﻒ ﻳﻜﺴﺎﻥ ﻧﺨﻮﺍﻫﺪ ﻣﺎﻧﺪ. ﺍﻳﻦ ﻣﺴﺌﻠﻪ ﺩﺭ ﻃﻮﻻﻧﻲ ﻣﺪﺕ ﻣﻲ ﺗﻮﺍﻧﺪ ﺑﺎﻋﺚ ﻛﺎﻫﺶ ﻃﻮﻝ ﻋﻤﺮ ﻣﻔﻴﺪ ﺑﺎﺗﺮﻱ ﺷﻮﺩ. ﺍﺯ ﺁﻧﺠﺎﻳﻲ ﻛﻪ ﺍﻓﺰﺍﻳﺶ ﺳﻄﺢ ﻭﻟﺘﺎﮊ ﻭ ﺟﺮﻳﺎﻥ ﻣﻮﺭﺩ ﻧﻴﺎﺯ ﺑﺮﺍﻱ ﺫﺧﻴﺮﻩ ﺳﺎﺯﻱ ﺍﻧﺮﮊﻱ، ﻣﻠﺰﻭﻡ ﺑﻪ ﺳﺮﻱ ﻭ ﻳﺎ ﻣﻮﺍﺯﻱ ﻛﺮﺩﻥ ﺳﻠﻮﻝ ﻫﺎﻱ ﺑﺎﺗﺮﻱ ﻣﻲ ﺑﺎﺷﺪ، ﻧﻴﺎﺯ ﺍﺳﺖ ﺗﺎ ﺳﻠﻮﻝ ﻫﺎ ﺑﻪ ﻫﻤﺮﺍﻩ ﻣﺪﺍﺭﻫﺎﻱ ﻳﻜﺴﺎﻥ ﺳﺎﺯﻱ ﺳﻄﺢ ﻭﻟﺘﺎﮊ، ﺑﻪ ﻳﻜﺪﻳﮕﺮ ﻣﺘﺼﻞ ﺷﻮﻧﺪ. ﺍﻳﻦ ﻛﺎﺭ ﺑﺎﻋﺚ ﻣﻲ ﺷﻮﺩ ﺗﺎ ﺑﺘﻮﺍﻥ ﺍﺯ ﺗﻤﺎﻡ ﻇﺮﻓﻴﺖ ﺑﺎﺗﺮﻱ ﺩﺭ ﺟﻬﺖ ﺫﺧﻴﺮﻩ ﺳﺎﺯﻱ ﺍﻧﺮﮊﻱ ﺍﺳﺘﻔﺎﺩﻩ ﻛﺮﺩﻩ ﻭ ﻃﻮﻝ ﻋﻤﺮ ﻣﻔﻴﺪ ﺑﺎﺗﺮﻱ ﺭﺍ ﻧﻴﺰ ﺣﻔﻆ ﻧﻤﻮﺩ. ﺍﺯ ﺍﻳﻦ ﺭﻭ ﺭﻭﺵ ﻫﺎﻱ ﻣﺨﺘﻠﻔﻲ ﺑﻪ ﻣﻨﻈﻮﺭ ﻳﻜﺴﺎﻥ ﺳﺎﺯﻱ ﺳﻄﺢ ﻭﻟﺘﺎﮊ ﺳﻠﻮﻝ ﻫﺎﻱ ﺑﺎﺗﺮﻱ ﺍﺭﺍﺋﻪ ﮔﺮﺩﻳﺪﻩ ﺍﺳﺖ. ﻣﺪﺍﺭﻫﺎﻱ ﻳﻜﺴﺎﻥ ﺳﺎﺯ ﺳﻄﺢ ﻭﻟﺘﺎﮊ ﺩﺭ ﺩﻭ ﻧﻮﻉ ﺗﻠﻔﺎﺗﻲ ﻭ ﺑﺪﻭﻥ ﺗﻠﻔﺎﺕ ﺩﺳﺘﻪ ﺑﻨﺪﻱ ﻣﻲ ﺷﻮﻧﺪ. ﺗﻤﺮﻛﺰ ﺍﺻﻠﻲ ﺍﻳﻦ ﭘﺎﻳﺎﻥ ﻧﺎﻣﻪ، ﭘﻴﺎﺩﻩ ﺳﺎﺯﻱ ﻳﻚ ﻣﺪﺍﺭ ﻳﻜﺴﺎﻥ ﺳﺎﺯ ﻭﻟﺘﺎﮊ ﺑﺎ ﺑﺎﺯﺩﻩ ﺑﺎﻻ ﺑﻪ ﺻﻮﺭﺕ ﻣﺪﺍﺭ ﻣﺠﺘﻤﻊ ﺍﺳﺖ. ﻳﻜﻲ ﺍﺯ ﭼﺎﻟﺶ ﻫﺎﻱ ﺍﺻﻠﻲ ﺩﺭ ﺑﺤﺚ ﭘﻴﺎﺩﻩ ﺳﺎﺯﻱ ﻭ ﺳﺎﺧﺖ ﻣﺒﺪﻝ ﻫﺎ، ﺍﻧﺘﺨﺎﺏ ﻓﺮﻛﺎﻧﺲ ﻛﻠﻴﺪﺯﻧﻲ ﻣﺒﺪﻝ ﺍﺳﺖ ﭼﺮﺍ ﻛﻪ ﺑﺎ ﺍﻓﺰﺍﻳﺶ ﻓﺮﻛﺎﻧﺲ ﻛﻠﻴﺪﺯﻧﻲ، ﺍﻧﺪﺍﺯﻩ ﺍﻟﻤﺎﻥ ﻫﺎﻱ ﺫﺧﻴﺮﻩ ﻛﻨﻨﺪﻩ ﺍﻧﺮﮊﻱ ﻛﺎﻫﺶ ﻣﻲ ﻳﺎﺑﺪ، ﺍﻣﺎ ﻣﻲ ﺗﻮﺍﻧﺪ ﻣﻨﺠﺮ ﺑﻪ ﺍﻓﺰﺍﻳﺶ ﺗﻠﻔﺎﺕ ﺷﻮﺩ. ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺍﻳﻨﻜﻪ ﻣﺪﺍﺭ ﺭﺯﻭﻧﺎﻧﺲ ﺳﺮﻱ ﻗﺎﺑﻠﻴﺖ ﺍﻳﺠﺎﺩ ﻛﻠﻴﺪﺯﻧﻲ ﻧﺮﻡ ﺩﺭ ﻭﻟﺘﺎﮊ ﺻﻔﺮ ﺑﺮﺍﻱ ﺗﻤﺎﻡ ﻛﻠﻴﺪﻫﺎ ﺩﺭ ﺭﻭﺷﻦ ﻭ ﺧﺎﻣﻮﺵ ﺷﺪﻥ ﺭﺍ ﺩﺍﺭﺩ، ﻣﻲ ﺗﻮﺍﻥ ﺍﺯ ﺍﻳﻦ ﻣﺪﺍﺭ ﺑﺮﺍﻱ ﭘﻴﺎﺩﻩ ﺳﺎﺯﻱ ﺩﺭ ﻣﺪﺍﺭﻣﺠﺘﻤﻊ ﺍﺳﺘﻔﺎﺩﻩ ﻧﻤﻮﺩ. ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺗﻐﻴﻴﺮ ﻓﺮﻛﺎﻧﺲ ﺗﻮﻟﻴﺪﻱ ﺩﺭ ﺗﺮﺍﺷﻪ ﺑﺎ ﺩﻣﺎ ﻭ ﮔﻮﺷﻪ ﻫﺎﻱ ﭘﺮﻭﺳﻪ ﻭ ﻧﻴﺰ ﺧﻄﺎﻱ ﺳﺎﺧﺖ ﺳﻠﻒ ﻭ ﺧﺎﺯﻥ ﺗﺎﻧﻚ ﺭﺯﻭﻧﺎﻧﺲ، ﻛﻠﻴﺪﺯﻧﻲ ﻧﺮﻡ ﻫﻤﺰﻣﺎﻥ ﺑﺎ ﺩﺍﺷﺘﻦ ﺍﺳﺘﺮﺱ ﻭﻟﺘﺎﮊ ﻭ ﺟﺮﻳﺎﻥ ﭘﺎﻳﻴﻦ ﺑﺎ ﭼﺎﻟﺶ ﻫﻤﺮﺍﻩ ﺍﺳﺖ. ﺩﺭ ﺍﻳﻦ ﭘﺎﻳﺎﻥ ﻧﺎﻣﻪ ﻛﻨﺘﺮﻝ ﺣﻠﻘﻪ ﺑﺴﺘﻪ ﺍﻱ ﭘﻴﺸﻨﻬﺎﺩ ﺷﺪﻩ ﺍﺳﺖ ﻛﻪ ﺷﺮﺍﻳﻂ ﻛﻠﻴﺪﺯﻧﻲ ﻧﺮﻡ ﻛﻠﻴﺪﻫﺎﻱ ﻣﺒﺪﻝ ﺭﺍ ﺑﺎ ﻭﺟﻮﺩ ﺗﻐﻴﻴﺮﺍﺕ ﺩﻣﺎ، ﮔﻮﺷﻪ ﻫﺎﻱ ﭘﺮﻭﺳﻪ، ﻓﺮﻛﺎﻧﺲ ﺗﻮﻟﻴﺪﻱ ﺗﺮﺍﺷﻪ ﻭ ﺧﻄﺎﻱ ﺳﺎﺧﺖ ﺳﻠﻒ ﻭ ﺧﺎﺯﻥ ﺭﺍ ﻓﺮﺍﻫﻢ ﻣﻲ ﻛﻨﺪ ﻭ ﻗﺎﺑﻠﻴﺖ ﺍﻃﻤﻴﻨﺎﻥ ﺗﺮﺍﺷﻪ ﺭﺍ ﻧﻴﺰ ﺍﻓﺰﺍﻳﺶ ﻣﻲ ﺩﻫﺪ. ﺩﺭ ﺍﻳﻦ ﻣﺒﺪﻝ، ﻓﺮﻛﺎﻧﺲ ﻛﻠﻴﺪﺯﻧﻲ ﻣﺒﺪﻝ ﺍﺯ ﻳﻚ ﻓﺮﻛﺎﻧﺲ ﺑﻴﺸﻴﻨﻪ ﺷﺮﻭﻉ ﺑﻪ ﻛﺎﺭ ﻣﻲ ﻛﻨﺪ. ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺁﺷﻜﺎﺭﺳﺎﺯﻱ ﻭﻟﺘﺎﮊ ﺩﻭﺳﺮ ﻛﻠﻴﺪ ﻗﺒﻞ ﺍﺯ ﺭﻭﺷﻦ ﺷﺪﻥ ﺁﻥ، ﻣﻲ ﺗﻮﺍﻥ ﺑﻪ ﻭﺟﻮﺩ ﻳﺎ ﻋﺪﻡ ﻭﺟﻮﺩ ﻛﻠﻴﺪﺯﻧﻲ ﻧﺮﻡ ﭘﻲ ﺑﺮﺩ. ﺩﺭ ﺻﻮﺭﺗﻲ ﻛﻪ ﺷﺮﺍﻳﻂ ﻻﺯﻡ ﺑﺮﺍﻱ ﻛﻠﻴﺪﺯﻧﻲ ﻧﺮﻡ ﻓﺮﺍﻫﻢ ﺷﺪﻩ ﺑﺎﺷﺪ، ﻓﺮﻛﺎﻧﺲ ﺩﺭ ﻫﻤﺎﻥ ﻣﻘﺪﺍﺭ ﺗﺜﺒﻴﺖ ﻣﻲ ﺷﻮﺩ ﻭ ﺩﺭ ﻏﻴﺮ ﺍﻳﻦ ﺻﻮﺭﺕ ﻳﻚ ﺑﺎﺯﺧﻮﺭﺩ ﺑﻪ ﻣﺪﺍﺭ ﺗﻮﻟﻴﺪﻛﻨﻨﺪﻩ ﻓﺮﻛﺎﻧﺲ ﺩﺍﺩﻩ ﻣﻲ ﺷﻮﺩ ﺗﺎ ﻓﺮﻛﺎﻧﺲ ﻛﻠﻴﺪﺯﻧﻲ ﺭﺍ ﻛﺎﻫﺶ ﺩﻫﺪ ﺗﺎ ﺟﺎﻳﻲ ﻛﻪ ﻛﻠﻴﺪﺯﻧﻲ ﻧﺮﻡ ﺑﻪ ﺩﺳﺖ ﺁﻳﺪ. ﺍﻳﻦ ﺍﻣﺮ ﺳﺒﺐ ﻣﻲ ﺷﻮﺩ ﺗﺎ ﻣﺤﺪﻭﺩﻳﺖ ﺩﺭ ﺍﻓﺰﺍﻳﺶ ﻓﺮﻛﺎﻧﺲ ﻛﻠﻴﺪﺯﻧﻲ ﻣﺒﺪﻝ ﻛﻤﺘﺮ ﺷﻮﺩ ﻭ ﺩﺭﻧﺘﻴﺠﻪ، ﺑﺎ ﻃﺮﺍﺣﻲ ﻣﺒﺪﻝ ﺩﺭ ﻓﺮﻛﺎﻧﺲ ﻫﺎﻱ ﺑﺎﻻ، ﺑﺘﻮﺍﻥ ﺍﻧﺪﺍﺯﻩ ﻭ ﺍﺑﻌﺎﺩ ﻣﺒﺪﻝ ﻳﻜﺴﺎﻥ ﺳﺎﺯ ﻭﻟﺘﺎﮊ ﺭﺍ ﺑﺮﺍﻱ ﻛﺎﺭﺑﺮﺩﻫﺎﻱ ﻗﺎﺑﻞ ﺣﻤﻞ ﻛﺎﻫﺶ ﺩﺍﺩ. ﻣﺪﺍﺭ ﻳﻜﺴﺎﻥ ﺳﺎﺯ ﺑﻪ ﻫﻤﺮﺍﻩ ﻣﺪﺍﺭ ﻛﻨﺘﺮﻝ ﭘﻴﺸﻨﻬﺎﺩﻱ ﺩﺭ ﺍﻳﻦ ﭘﺎﻳﺎﻥ ﻧﺎﻣﻪ ﺩﺭ ﭘﺮﻭﺳﻪ180 ﻧﺎﻧﻮﻣﺘﺮ ﺳﻲ ﻣﺎﺱ ﭘﻴﺎﺩﻩ ﺳﺎﺯﻱ ﺷﺪ. ﺑﺎ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻦ ﺧﻄﺎﻱ ﺳﺎﺧﺖ ﺳﻠﻒ ﻭ ﺧﺎﺯﻥ ﻛﻪ ﻓﺮﻛﺎﻧﺲ ﺭﺯﻭﻧﺎﻧﺲ ﺭﺍ ﺩﺭ ﻣﺤﺪﻭﺩﻩ4/2 ﺗﺎ5/9 ﻣﮕﺎﻫﺮﺗﺰ ﺗﻐﻴﻴﺮ ﻣﻲ ﺩﻫﺪ، ﻣﺪﺍﺭ ﻛﻨﺘﺮﻝ ﭘﻴﺸﻨﻬﺎﺩﻱ، ﺷﺮﺍﻳﻂ ﻛﻠﻴﺪﺯﻧﻲ ﻧﺮﻡ ﺭﺍ ﺑﺮﺍﻱ ﻣﺒﺪﻝ ﺭﺯﻭﻧﺎﻧﺴﻲ ﻓﺮﺍﻫﻢ ﻣﻲ ﻛﻨﺪ.
چكيده انگليسي :
Due to the development of technology and electrical appliances in most daily life, it has become necessary to store energy. In addition, the trend of switching energy sources to renewable energy has made us even more dependent on energy storage. It is because renewable energy sources, e.g., solar and wind, are not always at hand, leading to more need to store the produced energy in a battery. Therefore, batteries, nowadays, are widely used in many cases such as electrical, industrial, and residential applications. To provide energy sources with high voltage and power, battery cells should be connected in series and parallel. Due to the discrepancy in the internal and thermal specifications of different cells, the voltage levels of the cells will not stay balanced. This issue will lead to a decrease in the batteries’ lifetime. As the increase in voltage and current level for storing the energy relies on connecting battery cells in series and parallel, it is necessary to accompany them with the voltage balance circuits. This leads to the opportunity to use all the battery’s capacity to store energy and save battery life. Thus, various methods have been proposed to balance the voltage levels of battery cells. Voltage balance circuits are categorized into dissipative and nondissipative methods. This thesis focuses on implementing an efficient voltage balance integrated circuit. One of the main challenges in implementing and manufacturing converters is the choice of switching frequency. By increasing this parameter, the size of the energy storage elements decreases, but it can lead to increased losses. As the series resonant converter is susceptible to achieving zero voltage switching in turnon and off among all switches, it can be implemented as an integrated circuit. Due to the variation of chip’s temperature and corner, and manufacturing error of inductor and capacitor of the resonant tank, having the low voltage and current’s stress is challengeable simultaneous having softswitch among all switches. In this thesis, closedloop control is proposed to achieve zerovoltage switching despite the variation in temperature, process corner, generated frequency in the chip, and manufacturing error of inductor and capacitor, which can increase the reliability of the implemented chip. In this converter, the switching frequency gets started from a maximum value. By detecting the voltage across the switch before turnon, to be, or not to be of zero voltage switching can be realized. If the necessary conditions for soft switching are provided, the frequency is stabilized at the same value; otherwise, feedback is given to the DigitallyControlled Oscillator (DCO) to reduce the switching frequency until soft switching is achieved. This can overcome the limitation of increasing the switching frequency, and consequently, by designing the converter in highfrequency switching, component size and volume can be miniaturized, which can also reduce the chip’s size for increasing the opportunity of usage in a portable application. The balancing circuit with the proposed closedloop control frequency is implemented in 180nm CMOS process. Considering the inductor and capacitor fabrication error, which changes the resonance frequency in the range of 4.2 to 5.9 MHz, the proposed control circuit provides a softswitching condition for the resonance converter.