پديد آورنده :
علوي، فرادنبه شكوفه
عنوان :
ﺑﺮﺭﺳﯽ ﯾﺎﺩﮔﯿﺮﯼ ﻣﺎﺷﯿﻦ ﮐﻼﺳﯿﮏ ﻭ ﮐﻮﺍﻧﺘﻮﻣﯽ ﺩﺭ ﺗﺤﻠﯿﻞ ﺳﯿﺴﺘﻢﻫﺎﯼ ﺍﺳﭙﯿﻨﯽ ﮐﻮﺍﻧﺘﻮﻣﯽ
مقطع تحصيلي :
كارشناسي ارشد
محل تحصيل :
اصفهان : دانشگاه صنعتي اصفهان
توصيفگر ها :
ﯾﺎﺩﮔﯿﺮﯼ ﻣﺎﺷﯿﻦ ﮐﻮﺍﻧﺘﻮﻣﯽ , ﺷﺒﮑﻪﯼ ﻋﺼﺒﯽ ﮐﻮﺍﻧﺘﻮﻣﯽ , ﺷﺒﮑﻪﯼ ﻋﺼﺒﯽ ﻫﻤﮕﺸﺘﯽ , ﺳﯿﺴﺘﻢﻫﺎﯼ ﺍﺳﭙﯿﻨﯽ
تاريخ ورود اطلاعات :
1403/11/21
تاريخ ويرايش اطلاعات :
1403/11/23
چكيده فارسي :
ﺩﺭ ﺍﯾﻦ ﭘﮋﻭﻫﺶ ﺗﻼﺵ ﺷﺪﻩ ﺍﺳﺖ ﯾﮏ ﻧﻤﻮﻧﻪ ﺍﺯ ﺳﯿﺴﺘﻢﻫﺎﯼ ﺍﺳﭙﯿﻨﯽ ﺑﺎ ﺍﻧﺪﺭﮐﻨﺶ ﺑﻠﻨﺪﺑﺮﺩ ﺗﺼﺎﺩﻓﯽ ﻣﻮﺭﺩ ﺑﺮﺭﺳﯽ ﻗﺮﺍﺭ ﺑﮕﯿﺮﺩ. ﻫﻤﭽﻨﯿﻦ ﺭﻭﺵﻫﺎﯼ ﺷﺒﮑﻪﻫﺎﯼ ﻋﺼﺒﯽ ﮐﻼﺳﯿﮏ، ﻫﻤﮕﺸﺘﯽ ﮐﻼﺳﯿﮏ، ﻫﻤﮕﺸﺘﯽ ﺗﺮﮐﯿﺒﯽ ﮐﻮﺍﻧﺘﻮﻡ‑ﮐﻼﺳﯿﮑﯽ، ﻫﻤﮕﺸﺘﯽ ﮐﻮﺍﻧﺘﻮﻣﯽ، ﺩﺭ ﺟﺴﺘﺠﻮﯼ ﺑﺮﺗﺮﯼ ﺭﻭﺵﻫﺎﯼ ﮐﻮﺍﻧﺘﻮﻣﯽ ﻧﺴﺒﺖ ﺑﻪ ﮐﻼﺳﯿﮏ ﺩﺭ ﺑﺮﺭﺳﯽ ﻣﻮﺍﺩ ﮐﻮﺍﻧﺘﻮﻣﯽ ﻣﻮﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ ﻗﺮﺍﺭﮔﺮﻓﺘﻪ ﺍﻧﺪ. ﻫﻤﭽﻨﯿﻦ ﺗﺨﻤﯿﻦ ﺍﻧﺮﮊﯼ ﺣﺎﻟﺖ ﭘﺎﯾﻪﯼ ﺍﯾﻦ ﺳﯿﺴﺘﻢ ﻣﻐﻨﺎﻃﯿﺴﯽ ﺗﻮﺳﻂ ﺍﻟﮕﻮﺭﯾﺘﻢ ﻭﺭﺩﺷﯽ ﮐﻮﺍﻧﺘﻮﻣﯽ ﻫﻢ ﺻﻮﺭﺕ ﮔﺮﻓﺘﻪ ﺍﺳﺖ. ﺩﺭ ﺑﺨﺶ ﺩﯾﮕﺮ ﺗﻼﺵ ﺷﺪﻩ ﺍﺳﺖ ﺗﺎ ﺗﻐﯿﯿﺮﺍﺕ ﻣﻐﻨﺎﻃﺶ ﺳﯿﺴﺘﻢ ﻧﺴﺒﺖ ﺑﻪ ﺗﻐﯿﯿﺮﺍﺕ ﺿﺮﺍﯾﺐﻫﺎﻣﯿﻠﺘﻮﻧﯽ ﭼﻨﯿﻦ ﺳﯿﺴﺘﻤﯽ ﻣﻮﺭﺩ ﺑﺮﺭﺳﯽ ﻗﺮﺍﺭ ﺑﮕﯿﺮﺩ. ﺩﺭ ﺍﯾﻦ ﺑﺮﺭﺳﯽﻫﺎ، ﻧﺘﯿﺠﻪ ﮔﺮﻓﺘﯿﻢ ﮐﻪ ﺷﺒﮑﻪﯼ ﻋﺼﺒﯽ ﮐﻼﺳﯿﮏ ﻭ ﻫﻤﮕﺸﺘﯽ ﮐﻼﺳﯿﮏ، ﺭﻭﺵﻫﺎﯼ ﻣﻨﺎﺳﺒﯽ ﺑﺮﺍﯼ ﺍﺭﺯﯾﺎﺑﯽ ﭼﻨﯿﻦ ﺳﯿﺴﺘﻢ ﻣﻐﻨﺎﻃﯿﺴﯽ ﺍﯼ ﻫﺴﺘﻨﺪ. ﻫﻤﭽﻨﯿﻦ ﺷﺒﮑﻪﯼ ﻋﺼﺒﯽ ﺗﺮﮐﯿﺒﯽ ﮐﻮﺍﻧﺘﻮﻡ‑ﮐﻼﺳﯿﮑﯽ ﻧﻪ ﺗﻨﻬﺎ ﺩﺭ ﺑﯿﺸﺘﺮ ﻣﻮﺍﺭﺩ ﻣﻮﺭﺩ ﺑﺮﺭﺳﯽ ﺑﺎ ﺭﻭﺵ ﮐﻼﺳﯿﮏ ﻗﺎﺑﻞ ﻣﻘﺎﯾﺴﻪ ﺑﻮﺩ، ﺑﻠﮑﻪ ﺩﺭ ﺑﺮﺧﯽ ﻣﻮﺍﺭﺩ ﺑﺮﺗﺮﯼﻫﺎﯾﯽ ﻧﺴﺒﺖ ﺑﻪ ﺷﺒﮑﻪﯼ ﻋﺼﺒﯽ ﮐﻼﺳﯿﮏ ﺍﺯ ﺧﻮﺩ ﻧﺸﺎﻥ ﺩﺍﺩ. ﺷﺒﮑﻪﯼ ﻋﺼﺒﯽ ﻫﻤﮕﺸﺘﯽ ﮐﻮﺍﻧﺘﻮﻣﯽ ﻧﯿﺰ ﺑﻪ ﻋﻨﻮﺍﻥ ﺭﻭﺵ ﻣﻨﺎﺳﺒﯽ ﺑﺮﺍﯼ ﺷﻨﺎﺧﺖ ﭼﻨﯿﻦ ﺳﯿﺴﺘﻢ ﻣﻐﻨﺎﻃﯿﺴﯽ ﺍﯼ ﺩﺳﺘﻪ ﺑﻨﺪﯼ ﺷﺪ ﻭ ﺍﯾﻦ ﭘﮋﻭﻫﺶ ﺛﺎﺑﺖ ﻣﯽﮐﻨﺪ ﻣﯽﺗﻮﺍﻥ ﺭﻭﯼ ﺍﯾﻦ ﻣﺪﻝ ﺑﻪ ﻋﻨﻮﺍﻥ ﯾﮏ ﻣﻮﺭﺩ ﭘﮋﻭﻫﺸﯽ ﺩﺭ ﺟﺴﺘﺠﻮﯼ ﺑﺮﺗﺮﯼ ﺭﻭﺵﻫﺎﯼ ﮐﻮﺍﻧﺘﻮﻣﯽ ﺑﺮﺍﯼ ﺑﺮﺭﺳﯽ ﺳﯿﺴﺘﻢﻫﺎﯼ ﮐﻮﺍﻧﺘﻮﻣﯽ ﺣﺴﺎﺏ ﮐﺮﺩ. ﻣﺪﻝ Briⅽk−waⅼⅼ ﻧﯿﺰ ﻣﻮﻓﻖ ﺑﻪ ﯾﺎﺩﮔﯿﺮﯼ ﭼﻨﯿﻦ ﺳﯿﺴﺘﻤﯽ ﺷﺪ ﻭ ﺗﻮﺍﻧﺴﺖ ﭘﯿﺸﺒﯿﻨﯽﻫﺎﯼ ﺩﺭﺳﺘﯽ ﺍﺯ ﺧﻮﺍﺹ ﺍﯾﻦ ﺳﯿﺴﺘﻢ ﺍﺭﺍﺋﻪ ﮐﻨﺪ. ﺩﺭ ﺑﻬﺮﻩ ﮔﯿﺮﯼ ﺍﺯ ﺍﻟﮕﻮﺭﯾﺘﻢ ﻭﺭﺩﺷﯽ ﮐﻮﺍﻧﺘﻮﻣﯽ، ﺛﺎﺑﺖ ﺷﺪ ﺍﯾﻦ ﺭﻭﺵ ﻧﺴﺒﺖ ﺑﻪ ﺭﻭﺵ ﻗﻄﺮﯼ ﺳﺎﺯﯼ ﺩﻗﯿﻖ ﺑﺮﺗﺮﯼﻫﺎﯾﯽ ﺩﺍﺭﺩ ﮐﻪ ﺁﻥ ﺭﺍ ﺑﻪ ﻋﻨﻮﺍﻥ ﯾﮏ ﻣﺪﻝ ﻗﺎﺑﻞ ﺍﺗﮑﺎ ﺑﻪ ﻟﺤﺎﻅ ﺳﺮﻋﺖ ﻭ ﺩﻗﺖ ﺩﺭ ﺑﺮﺭﺳﯽ ﺳﯿﺴﺘﻢﻫﺎﯼ ﮐﻮﺍﻧﺘﻮﻣﯽ ﻣﻄﺮﺡ ﻣﯽﮐﻨﺪ.
چكيده انگليسي :
In this study, an attempt has been made to investigate an example of magnetic systems with quantum properties called a spin system with a random long-range interaction. Also, classical neural network methods, classical convolutional neural network, hybrid classical-quantum convolutional neural network, and quantum convolutional neural network have been used in search of the superiority of quantum methods over classical ones in the study of quantum materials. Also, the ground state energy of this magnetic system has been estimated by the variational quantum algorithm. In another section, an effort has been made to investigate the changes in the system’s magnetization concerning variations in the coefficients of such a Hamiltonian system. In these analyses, we concluded that classical neural networks and clas- sical convolutional methods are suitable approaches for evaluating such a magnetic system. In these studies, we concluded that the classical neural network and classical convergence are appropriate methods for evaluating such a magnetic system. The hybrid classical-quantum neural network not only proved comparable to the classical method in most cases studied but also demonstrated certain advantages over classical neural networks in some instances. The quantum convolutional neural network was also categorized as a suitable approach for analyzing such magnetic systems, and this research establishes that this model can be consid- ered as a case study in the pursuit of quantum methods’ superiority for examining quantum systems. Brick-wall model also succeeded in learning such a system and was able to provide correct predictions of the properties of this system. In employing the variational quantum algorithm, it was demonstrated that this method has advantages over exact diagonalization, establishing it as a reliable model in terms of speed and accuracy for investigating quantum systems.
استاد راهنما :
فرهاد فضيله
استاد مشاور :
كيوان آقابابائي ساماني
استاد داور :
فرهاد شهبازي دستجرده , حامد بخشيان