توصيفگر ها :
جداكننده مغناطيسي گراديان بالا , ديناميك سيالات محاسباتي , نانوذرات اكسيد آهن , راندمان جذب ذرات
چكيده فارسي :
در اين تحقيق، رفتار ذرات مغناطيسي با قطرهاي بين 14 تا 29 نانومتر، كه با استفاده از توزيع روزين-راملر مدلسازي شدهاند، در جريان داخلي لوله تحت تأثير ميدان مغناطيسي بهصورت عددي تحليل شد. براي ارزيابي صحت نتايج شبيهسازيها، اعتبارسنجي آنها با استفاده از دادههاي تجربي موجود انجام گرفت كه نشاندهنده خطاي حداكثر 10 درصدي بود كه عمدتاً به محدوديتهاي تجهيزات آزمايشي مربوط ميشود. مسير حركت پنج ذره با قطرهاي 1، 1.25، 1.5، 1.75 و 2 ميكرون در اعداد رينولدز 1500، 3000 و 8000 بررسي شد. نتايج نشان داد كه ميدان مغناطيسي تأثير قابلتوجهي بر حركت و جذب ذرات دارد. در تمام شرايط جريان، ذرات ابتدا مسير جريان سيال را دنبال كرده و سپس تحت تأثير نيروي مغناطيسي به سمت ديواره لوله منحرف شدند. اين انحراف بستگي به قطر ذرات و شدت ميدان مغناطيسي داشت. نتايج نشان داد كه ذرات با قطر بزرگتر (10 ميكرون) بيشتر تحت تأثير ميدان مغناطيسي قرار گرفتند و سريعتر جذب شدند. همچنين، اثر تغييرات اندازه ميدان مغناطيسي و عدد رينولدز بر ذرات با قطرهاي مختلف (10، 100 و 1000 نانومتر) بررسي شد. اين نتايج حاكي از آن بود كه با افزايش اندازه ذرات و شدت ميدان مغناطيسي، جذب ذرات به طور قابلتوجهي افزايش مييابد، در حالي كه با افزايش عدد رينولدز، جذب كاهش مييابد بهدليل افزايش مومنتوم جريان و كاهش زمان تعامل ذرات با ميدان مغناطيسي. شبيهسازيها نشان داد كه ذرات بيشترين جذب را در قسمت ابتدايي لوله (نزديك ورودي) دارند و به تدريج در قسمتهاي بعدي لوله جذب كمتري ميشوند. همچنين مشاهده شد كه با افزايش عدد رينولدز از 1500 به 3000، جذب ذرات افزايش يافته و سپس در اعداد رينولدز بالاتر (3000 تا 5000) ثابت مانده و در نهايت در اعداد رينولدز 5000 تا 8000 كاهش پيدا ميكند. اين تغييرات ناشي از رقابت بين نيروهاي اينرسي و مغناطيسي است. در قسمتهاي دوم و سوم لوله، بهدليل فاصله بيشتر از ورودي، تعداد ذرات كمتري جذب شدند.
چكيده انگليسي :
In this study, magnetic nanoparticles with diameters ranging from 14 to 29 nm, modeled using a Rosin–Rammler distribution, were numerically analyzed for their behavior within an internal flow subjected to magnetic fields. To verify the accuracy of the simulations, validation was conducted against existing experimental data, showing a maximum error of about 10%, primarily attributed to experimental equipment limitations. The trajectories of five different particles with diameters of 1, 1.25, 1.5, 1.75, and 2 μm were examined under Reynolds numbers of 1500, 3000, and 8000. The results indicated a substantial influence of the magnetic field on particle motion and capture. Across all flow conditions, particles initially followed the fluid streamlines but deviated laterally under the magnetic force, with earlier stabilization of their lateral positions observed at higher Reynolds numbers due to thinner boundary layers. Particles closer to the pipe wall experienced more deflection due to boundary layer effects, and magnetic fields significantly altered their paths compared to the no-field condition. Particles were either captured or traveled near the wall depending on their diameters and the local field strength. Larger particles were found to be more influenced by the magnetic field and captured more quickly. Under a constant flow rate, particles with larger diameters (10 μm) showed faster and more efficient capture compared to smaller ones (3 and 5 μm). The effect of varying magnetic field strengths and Reynolds numbers was further evaluated for particles of 10, 100, and 1000 nm diameters. It was observed that increasing particle size and magnetic field intensity led to increased capture efficiency, whereas higher Reynolds numbers reduced capture due to elevated flow momentum and decreased interaction time. The study also highlighted that magnetic field effectiveness depends not only on intensity but also on its placement along the pipe. In simulations with magnetic fields applied at three distinct axial sections, particle capture was highest in the first section (near the inlet), and decreased toward the outlet. The capture efficiency (CE) initially increased with Reynolds number (from 1500 to 3000), remained nearly constant (3000 to 5000), and then declined at higher Reynolds numbers (5000 to 8000), indicating a trade-off between inertial and magnetic forces. The second section of the pipe showed enhanced deposition in stronger fields, possibly due to residual effects from the first section. The third section, being near the outlet, consistently showed the least deposition due to limited particle residence time. Quantitative analysis showed that particles either settled within the pipe or exited the domain based on the competition between inertial and magnetic forces. The average residence time of particles decreased with Reynolds number, and a performance metric η, defined as the ratio of particles exiting to total particles, was introduced to evaluate separation performance. Overall, particle capture was maximized at moderate Reynolds numbers under sufficiently strong magnetic fields.