چكيده فارسي :
با افزايش روزانه مصرف و قيمت انرژي الكتريكي، توجه به سمت استفاده از انرژيهاي تجديدپذير همانند انرژي خورشيدي به عنوان راهكاري براي مقابله با مشكلات زيست محيطي و همچنين تأمين انرژي مناطق دور از شبكه برق افزايش يافته است. منابع انرژي تجديدپذير ماهيت متناوب و ناپايداري دارند و براي جبران نوسانات توان توليدي و مصرفي، نياز به منبع ذخيرهكننده انرژي دارند. استفاده از چندين مبدل مجزا براي افزودن هر منبع، باعث افزايش حجم مبدل ميگردد و استفاده از مبدلهاي چند ورودي، راهكار مناسبي براي كاهش تعداد المانها است. انرژي خورشيدي از جمله منابع با دسترسي بالا است اما سطح ولتاژ توليدي پنلهاي خورشيدي پايين بوده و براي اتصال به شبكه بايد ولتاژ خروجي پنل خورشيدي تا بيش از ولتاژ شبكه افزايش يابد. همچنين امروزه با افزايش كاربردهاي با نياز به بازگشت انرژي از خروجي، مبدلهاي چند ورودي دو جهته پديدار گشته است تا بتواند امكان انتقال توان در هر دو جهت را فراهم نمايد. به منظور حذف تلفات كليدزني بر روي المانهاي نيمههادي مبدل، تكنيكهاي كليدزني نرم به مبدلها افزوده گرديده است. يكي از چالشهاي طراحي مبدلهاي چند ورودي، فراهم كردن شرايط كليدزني نرم با توجه به تعدد مسيرهاي انتقال توان ميباشد. در اين پاياننامه مبدلهاي چند ورودي غير ايزوله همراه با منبع ذخيرهكننده انرژي بررسي ميگردند.
چكيده انگليسي :
With ever increasing electric energy consumption and price, more attention is paid to further utilize renewable energy sources like solar energy as a solution for confronting environmental problems. In addition, the renewable energy sources are suitable for providing energy to the remote areas which are far from the power grid. Renewable energy sources have intermittent feature and in order to compensate for the generation and consumption power fluctuations, energy storage sources are required. Utilizing separate converter for each source, increases the system volume. Utilizing multi input converters is a good solution to reduce elements count and complexity. Solar energy is among the sources with high availability, but the photovoltaic panels produced voltage is low and should be boosted before connecting to electric grid. Also, with increasing applications that require the return of output energy to the input, bidirectional multi input converters are developed. Soft-switching techniques are utilized to eliminate the semiconductors switching losses. Providing soft-switching condition for semiconductor elements in all power paths, is a design challenge in multi input converters. In this thesis, non-isolated multi input converters with energy storage systems are investigated.
In chapter one, the necessity of multi input converters and their varieties are analyzed. In chapter two, common ways for developing multi input converters are investigated and finally multi input high step up or/and soft-switched converters based on three port boost topology which have high element sharing instinctively, are reviewed. In chapter three, by modifying the basic boost three port topology and utilizing switched capacitor technique, two multi input converters with continuous battery current in single-input single-output modes are proposed. The first multi input converter is suitable for low output powers while the second multi input converter is suited for higher power applications. In chapter four, three port boost topology is utilized along with a switch, a capacitor and three wingdings which are coupled with the main inductance to increase the switching frequency, efficiency and voltage gain of the third proposed converter. In chapter five, at first the idea of a non-isolated soft-switched multi input converter which is a combination of the modified three port boost topology and the third proposed converter, is presented.In contrast to the previously proposed converter, an auxiliary winding and the capacitive turn on loss are eliminated which leads to higher efficiency and switching frequency. At the end of chapter five, the idea of a bidirectional multi input single magnetic core converter is proposed which is a combination of the basic buck and boost converters. Thus, the battery current in single-input single-output modes is continuous. In order to verify the theoretical results, the proposed converters in chapter three and four are implemented in the laboratory while the converters in chapter five are simulated by computer. In chapter six, the thesis conclusions are presented and finally some suggestions regarding the continuation of this research are provided