شماره مدرك :
20391
شماره راهنما :
17552
پديد آورنده :
جمالي، عاطفه
عنوان :

يك روش عددي براي حل يك كلاس از مسائل كنترل بهينه كسري از طريق ماتريس عملياتي چندجمله اي هاي برنولي

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
بهينه سازي
محل تحصيل :
اصفهان : دانشگاه صنعتي اصفهان
سال دفاع :
1404
صفحه شمار :
هشت، 54ص. :مصور، جدول، نمودار
توصيفگر ها :
كنترل بهينه كسري , ماتريس عملياتي , مشتق كسري كاپوتو , انتگرال كسري ريمان- ليوويل , چندجمله اي هاي برنولي , قاعده تربيع گاوس-لژاندر
تاريخ ورود اطلاعات :
1404/05/21
كتابنامه :
كتابنامه
رشته تحصيلي :
رياضيات و كاربردها
دانشكده :
رياضي
تاريخ ويرايش اطلاعات :
1404/05/25
كد ايرانداك :
23147713
چكيده فارسي :
در اين پايان نامه، يك روش عددي براي حل مسائل كنترل بهينه معرفي شده است. اين روش مبتني بر چندجمله‌اي‌هاي برنولي است. در اين پايان نامه، ابتدا ضمن معرفي چندجمله‌اي‌هاي برنولي و بيان خواص آنها، بررسي برتري اين چندجمله‌اي‌ها نسبت به ديگر چندجمله‌اي‌هاي بيان شده نشان داده شده است. سپس ماتريس عملياتي انتگرال در اين پايه معرفي شده و در ادامه با استفاده از اين ماتريس، مسأله كنترل بهينه مورد نظر به يك مسأله بهينه سازي پارامتري تبديل مي شود، كه مي توان آن را با استفاده از تكنيك هاي موجود حل نمود. با ارائه مثال هاي گوناگون، دقت و كارايي روش ارائه شده مبتني بر چندجمله اي‌هاي برنولي مورد بررسي و ارزيابي قرار گرفته است.
چكيده انگليسي :
In this thesis, we focus on optimal control problems with a quadratic performance index an‎d a dynamic system with a Caputo fractional derivative. The problem formulation is as follows: min J = ∫ 1 f(t, x(t), u(t)) dt, 0 K x′(t) + D^q x(t) = g(t, x(t)) + b(t)u(t), x(0) = x0, x(1) = x1, 1 <‎ q ≤ 2, where f, g an‎d b ̸= 0 are smooth functions of their arguments, D^q is the Caputo fractional derivative of order q an‎d K is a constant number. Fractional differential equations have been the focus of many studies due to their frequent appearance in various applications in fluid mechanics, biology, physics an‎d engineering. Consequently, considerable attention has been given to the solutions of fractional differential equations an‎d integral equations which are of physical interest. Most of the fractional differential equations do not have exact analytical solutions, so approximate an‎d numerical techniques must be used. Optimal control theory is an area of mathematics which has been under development for years, however the fractional optimal control theory is a new area of mathematics. Fractional optimal control problems can be defined with respect to different definitions of fractional derivatives. But the most important types of fractional derivatives are the Riemann-Liouville an‎d the Caputo fractional derivatives. Recently, the operational matrices of fractional derivatives an‎d those of fractional integrals were used based on different types of orthogonal polynomials for solving different types of fractional differential equations. There are many applications of orthogonal polynomials for solving various types of fractional optimal control problems. The operational matrices of the fractional integration of other polynomials have been derived, including, for example, the operational matrix of the fractional integration of shifted Jacobi polynomials, the operational matrix of the fractional integration based on Bernstein polynomials, an‎d the operational matrix of the fractional integration of modified generalized Laguerre polynomials. We solve the problem under consideration directly, without using Hamiltonian formulas. In this thesis, we present a new direct computational method to solve the problem under study by using Bernoulli polynomials. The method we use consists of reducing the given optimization problem to the problem of finding the solution of a set of nonlinear algebraic equations. Then, the new system of algebraic equations is solved by employing the Newtons iterative method. Bernoulli polynomials play an important role in various expansions an‎d approximation formulas which are useful in both analytical theory of numbers an‎d in classical an‎d numerical analysis. These polynomials can be defined by various methods depending on the applications. In order to demonstrate the efficiency, applicability an‎d accuracy of the proposed approximation method, an‎d the advantage of using Bernoulli polynomials to solve fractional optimal control problems, a few test problems are investigated.
استاد راهنما :
حميدرضا مرزبان
استاد مشاور :
عطيه نظامي
استاد داور :
رسول عاشقي حسين آبادي , محمود منجگاني
لينک به اين مدرک :

بازگشت