توصيفگر ها :
كنترل بهينه كسري , ماتريس عملياتي , مشتق كسري كاپوتو , انتگرال كسري ريمان- ليوويل , چندجمله اي هاي برنولي , قاعده تربيع گاوس-لژاندر
چكيده فارسي :
در اين پايان نامه، يك روش عددي براي حل مسائل كنترل بهينه معرفي شده است. اين روش
مبتني بر چندجملهايهاي برنولي است. در اين پايان نامه، ابتدا ضمن معرفي چندجملهايهاي
برنولي و بيان خواص آنها، بررسي برتري اين چندجملهايها نسبت به ديگر چندجملهايهاي بيان
شده نشان داده شده است. سپس ماتريس عملياتي انتگرال در اين پايه معرفي شده و در ادامه
با استفاده از اين ماتريس، مسأله كنترل بهينه مورد نظر به يك مسأله بهينه سازي پارامتري
تبديل مي شود، كه مي توان آن را با استفاده از تكنيك هاي موجود حل نمود. با ارائه مثال هاي
گوناگون، دقت و كارايي روش ارائه شده مبتني بر چندجمله ايهاي برنولي مورد بررسي و ارزيابي
قرار گرفته است.
چكيده انگليسي :
In this thesis, we focus on optimal control problems with a quadratic performance index and a dynamic system
with a Caputo fractional derivative. The problem formulation is as follows:
min J = ∫ 1 f(t, x(t), u(t)) dt,
0
K x′(t) + D^q x(t) = g(t, x(t)) + b(t)u(t),
x(0) = x0, x(1) = x1, 1 < q ≤ 2,
where f, g and b ̸= 0 are smooth functions of their arguments, D^q
is the Caputo fractional derivative of order q and
K is a constant number. Fractional differential equations have been the focus of many studies due to their frequent
appearance in various applications in fluid mechanics, biology, physics and engineering. Consequently, considerable attention has been given to the solutions of fractional differential equations and integral equations which are of
physical interest. Most of the fractional differential equations do not have exact analytical solutions, so approximate
and numerical techniques must be used. Optimal control theory is an area of mathematics which has been under development for years, however the fractional optimal control theory is a new area of mathematics. Fractional optimal
control problems can be defined with respect to different definitions of fractional derivatives. But the most important types of fractional derivatives are the Riemann-Liouville and the Caputo fractional derivatives. Recently, the
operational matrices of fractional derivatives and those of fractional integrals were used based on different types of
orthogonal polynomials for solving different types of fractional differential equations. There are many applications
of orthogonal polynomials for solving various types of fractional optimal control problems. The operational matrices
of the fractional integration of other polynomials have been derived, including, for example, the operational matrix
of the fractional integration of shifted Jacobi polynomials, the operational matrix of the fractional integration based
on Bernstein polynomials, and the operational matrix of the fractional integration of modified generalized Laguerre
polynomials. We solve the problem under consideration directly, without using Hamiltonian formulas. In this thesis,
we present a new direct computational method to solve the problem under study by using Bernoulli polynomials. The
method we use consists of reducing the given optimization problem to the problem of finding the solution of a set
of nonlinear algebraic equations. Then, the new system of algebraic equations is solved by employing the Newtons
iterative method. Bernoulli polynomials play an important role in various expansions and approximation formulas
which are useful in both analytical theory of numbers and in classical and numerical analysis. These polynomials
can be defined by various methods depending on the applications. In order to demonstrate the efficiency, applicability and accuracy of the proposed approximation method, and the advantage of using Bernoulli polynomials to solve
fractional optimal control problems, a few test problems are investigated.