توصيفگر ها :
مشتق كاپوتو , انتگرال ريمان-ليوويل , مسائل تغييرات كسري هممحيطي , چندجملهايهاي لژاندر , ماتريس عملياتي , روش ضرايب لاگرانژ
چكيده فارسي :
هدف اين پاياننامه، ارائه يك روش عددي مستقيم مبتني بر چندجملهايهاي لژاندر انتقاليافته، براي حل مسائل هممحيطي در حسابتغييرات است. ابتدا ماتريس عملياتي انتگرال كسري متناظر با چندجملهايهاي لژاندر انتقاليافته را با استفاده از انتگرال كسري ريمان-ليوويل بهدست ميآوريم. سپس با استفاده از مفهوم مشتق كسري كاپوتو، ماتريس عملياتي مشتق كسري متناظر با چندجملهايهاي مذكور را محاسبه ميكنيم. با استفاده از خواص چندجملهايهاي لژاندر و ماتريسهاي مذكور، مسأله هممحيطي مورد مطالعه به يك مسأله بهينهسازي پارامتري بدون محدوديت تبديل ميشود. مسأله بهينهسازي جديد با استفاده از روش ضرايب لاگرانژ و اعمال شرايط لازم بهينگي، حل شده است. درانتها، براي ارزيابي دقت، كارايي و كاربرد روش، مثالهاي متنوعي در مسائل هممحيطي ارائه شده است.
چكيده انگليسي :
This M.Sc. thesis is based on the following paper
• Ezz-Eldien, S.S., Bhrawy, A.H., and El-Kalaawy, A.A. Direct numerical method for isoperimetric fractional
variational problems based on operational matrix. Journal of Vibration and Control, (2018) 24:3063-3076.
In this thesis, we study isoperimetic problems expressed by
min J =
∫ T
0
L(t; yj(t);Dviyj(t)) dt;
subject to the integral constraint ∫ T
0
G(t; yj(t);Dviyj(t)) dt = k;
and
yj(0) =aj ; yj(T) = bj ;
y(1)
j (0) =a1j
; y(1)
j (T) = b1j
;
...
...
y(n1)
j (0) =an1
j ; y(n1)
j (T) = bn1
j ;
where i = 1; 2; : : : ; n، j = 1; 2; : : : ;m، i 1 < vi < i، 0 t T، and k 2 R. Additionally, Dvi denotes
the caputo fractional derivative of order vi. Isoperimetric problems are consisting of maximizing or minimizing a
cost functional subject to integral constraints. There is a wide class of important applications of isoperimetric problems
that have been found throughout centuries, including astronomy, algebra, geometry and analysis. The study of
isoperimetric problems nowadays is done, in an elegant and rigorously way, by means of the theory of the calculus
of variations, and concrete isoperimetric problems in engineering were also investigated by a number of authors.
The calculus of variations with fractional derivatives was born in 1996 with the work of Riewe when he obtained
a version of the Euler–Lagrange equations for fractional variational problems combining the conservative and nonconservative
cases. Fractional variational problems became the subject of strong current research due to its many
applications in science and engineering, including mechanics, chemistry, biology, economics and control theory. In
the current thesis, a numerical technique was employed, based on shifted Legendre orthonormal polynomials, for
solving isoperimetric fractional variational problems. We used the operational matrices of the fractional differentiation
and fractional integration, together with the Lagrange multipliers method to get a system of algebraic equations
in the unknown expansion coefficients that may be evaluated using any iterative method. To test the accuracy of the
presented method, we introduced some test problems and compared our results with the exact solution. The proposed
method is to reduce the given variational problem to a problem to find the optimal solution of a real valued function.
The higher order fractional derivative of the unknown functions yj(t), j = 1; 2; : : : ;m, are expanding in terms
of the basis function and then we get yj(t), j = 1; 2; : : : ;m, by using the operational matrix of fractional integration.
Introducing an auxiliary function by merging the performance index with the integral constraint, and using
the Lagrange multipliers method for merging that auxiliary function with the boundary conditions, the isoperimetric
fractional variational problem under stady in the thesis may be converted into solving an algebraic equations system.
Various types of isoperimetric problems are investigated to demonstrate the validity, applicability and accuracy of the
suggested numerical scheme.