توصيفگر ها :
كنترل بهينه كسري , موجك چبيشف مرتبه كسري , روش عددي , تابع بتا , انتگرال كسري
چكيده فارسي :
در اين پايان نامه، يك روش عددي نوين براي حل مسائل كنترل بهينه كسري (FOCPs) ارائه شده است. اين روش مبتني بر موجك هاي چبيشف مرتبه كسري نوع دوم (GFOCW) طراحي شده و از ويژگي هاي خاص اين موجك ها بهره مي برد. براي محاسبه دقيق عملگر انتگرال مرتبه كسري ريمان‐ليوويل براي موجك هاي مزبور از تابع بتاي ناكامل استفاده شده است. با به كارگيري روش هم مكاني و ويژگي هاي موجك هاي چبيشف مرتبه كسري نوع دوم، مسأله كنترل بهينه كسري به يك مسأله بهينه سازي پارامتري تبديل مي شود كه با الگوريتم هاي شناخته شده قابل حل است و حل آن به مراتب ساده تر از حل مسأله اصلي است. در ادامه، شش مثال عددي ارائه شده است كه يكي از آنها به مدل سرطان اختصاص دارد. مقايسه با روش هاي ديگر نشان مي دهد كه روش ارائه شده در اين پايان نامه، نسبت به بسياري از روش هاي ديگر از دقت بالاتري برخوردار است. خاطرنشان مي شود كه روش پيشنهادي قادر است در غالب موارد پاسخ دقيق مسأله كنترل بهينه كسري مورد مطالعه را توليد كند.
موضوعي بندي رده: 34A08, 93C10, 41A50, 34K37
واژگان كليدي: كنترل بهينه كسري، موجك چبيشف مرتبه كسري، روش عددي، تابع بتا، انتگرال كسري.
چكيده انگليسي :
This M.Sc. thesis is based on the following paper
• Ghanbari, G., Razzaghi M.
Numerical solutions for fractional optimal control problems by using generalized fractional-order
Chebyshev wavelets. International Journal of Systems Science, (2022) 53:778–792.
In this thesis, we study an important category of fractional optimal control problems presented by
min J(x, u) =
∫ 1
0
f (t, x(t), u(t)) dt,
subject to the constrains
u(t) = G(t, x(t), Dβ0 x(t), Dβ1 x(t), . . . , Dβr x(t)),
and to the initial conditions given by
x(k)(0) = λk, k = 0, 1, 2, . . . , n − 1,
where β0 ≥ β1 ≥ . . . ≥ βr, and n − 1 < β0 ≤ n, for n ∈ N. Fractional calculus has received much
attention among scientists because of its vast applications in various fields such as signal processing,
solid mechanics, mathematical finance, control theory, nonlinear oscillation, and other areas of science
and engineering. The fractional optimal control problems (FOCPs) are the optimal control problems in
which the cost function or the constraints contain fractional derivatives. FOCPs have been applied in many
areas, such as electronic, chemical, biological systems and transportation. Wavelet theory has gained a
lot of interest in many application fields, such as signal processing and differential and integral equations.
Different variations of wavelet bases (orthogonal, biorthogonal, multiwavelets) have been presented and
the design of the corresponding wavelet and scaling functions has been addressed. Wavelets permit the
accurate representation of a variety of functions and operators. Moreover, wavelets establish a connection
with fast numerical algorithms. Due to the considerable advantages of wavelets, different types of them
have been used for solving a vast area of problems. Some of these wavelets are Legendre wavelets, CAS
wavelets, Bessel wavelets, Chebyshev wavelets and Haar wavelets. For these wavelets, in general, the
operational matrices of integration, P β , of the wavelets Ψ(t) were applied in the form Iβ Ψ(t) ∼= P β Ψ(t),
where Iβ is the Riemann–Liouville fractional integral operator (RLFIO) of order β. In this thesis, we
propose a new numerical method for solving fractional optimal control problems (FOCPs). The method
is based on generalised fractional-order Chebyshev wavelets (GFOCW). The exact value of the Riemann–
Liouville fractional integral operator of the GFOCW is given by applying the incomplete beta function.
By using the properties of GFOCW and the collocation method, the FOCP is reduced to a parameter
optimisation problem. The last problem is solved by known algorithms. Six numerical examples are
given. One of them is an application example in a cancer model. Through these numerical examples, we
will show that for some cases of our examples, we will get the exact solutions. These solutions were not
obtained previously in the literature. In addition, our method gives more accurate results in comparison
with the existing methods. Some key features of the proposed method are as follows:
• We could obtain the exact value of the Riemann–Liouville fractional integral operator for Gener-
alised fractional-order Chebyshev wavelets.
• The proposed method could obtain the exact solutions of some problems whose exact solutions are
polynomials or fractional-order monomials. These exact solutions were not obtained previously in
the literature.
• Our numerical method gives more accurate solutions than those shown in the literature.
The simulation results demonstrate the effectiveness of the suggested numerical approach.