توصيفگر ها :
اسكلت بيروني توانافزا , نوسانگر تطبيقي , تخمين فاز گام , جبرانساز فاز , كاهش بار مفصلي , پايداري ديناميكي
چكيده فارسي :
اﺳﻜﻠﺖﻫﺎي ﺑﻴﺮﻭﻧﻲ ﺗﻮاناﻓﺰا ﺑﻪﻋﻨﻮان ﻳﻜﻲ اﺯ ﭘﻴﺸﺮﻓﺘﻪﺗﺮﻳﻦ ﻓﻨﺎﻭﺭيﻫﺎي ﻛﻤﻚ ﺣﺮﻛﺘﻲ، ﻧﻘﺶ ﻣﻬﻤﻲ دﺭ اﻓﺰاﻳﺶ ﺗﻮان ﻋﻀﻼﻧﻲ، ﺑﻬﺒﻮد ﻛﻴﻔﻴﺖ ﺣﺮﻛﺖ ﻭ ﻛﺎﻫﺶ ﺑﺎﺭ ﻣﻔﺼﻠﻲ اﻳﻔﺎ ﻣﻲﻛﻨﻨﺪ. ﻣﻮﻓﻘﻴﺖ اﻳﻦ ﺳﺎﻣﺎﻧﻪﻫﺎ ﺑﻪ ﺗﻮاﻧﺎﻳﻲ ﺁنﻫﺎ دﺭ ﻫﻤﮕﺎمﺳﺎﺯي دﻗﻴﻖ ﺑﺎ اﻟﮕﻮي ﺣﺮﻛﺘﻲ ﻛﺎﺭﺑﺮ ﻭاﺑﺴﺘﻪ اﺳﺖ. اﺯ اﻳﻦﺭﻭ، ﺗﻮﺳﻌﻪ اﻟﮕﻮﺭﻳﺘﻢﻫﺎي ﻛﻨﺘﺮﻟﻲ ﻛﻪ ﻗﺎدﺭ ﺑﺎﺷﻨﺪ ﺑﻪﺻﻮﺭت ﺑﺮﺧﻂ ﺑﺎ ﺗﻐﻴﻴﺮات ﺳﺮﻋﺖ، داﻣﻨﻪ ﻭ ﻓﺎﺯ ﮔﺎم ﺳﺎﺯﮔﺎﺭ ﺷﻮﻧﺪ، ﺿﺮﻭﺭت داﺭد. دﺭ اﻳﻦ ﭘﺎﻳﺎنﻧﺎﻣﻪ، ﻳﻚ ﺭﻭﻳﻜﺮد ﻧﻮﻳﻦ ﻣﺒﺘﻨﻲ ﺑﺮ ﻧﻮﺳﺎﻧﮕﺮ ﺗﻄﺒﻴﻘﻲ ﻫﻤﺮاه ﺑﺎ ﺟﺒﺮانﺳﺎﺯ ﻓﺎﺯ اﺭاﺋﻪ ﮔﺮدﻳﺪ. اﻳﻦ ﺭﻭﺵ ﺑﺎ اﺳﺘﻔﺎده اﺯ ﺳﻴﮕﻨﺎل ﺯاﻭﻳﻪ ﻣﻔﺼﻞ ﻟﮕﻦ ﻭ ﻧﻴﺮﻭي ﻋﻜﺲاﻟﻌﻤﻞ ﺯﻣﻴﻦ، ﻗﺎدﺭ اﺳﺖ ﻓﺎﺯ ﭼﺮﺧﻪ ﺭاهﺭﻓﺘﻦ ﺭا ﺑﺎ دﻗﺖ ﺑﺎﻻ ﺗﺨﻤﻴﻦ ﺯده ﻭ ﮔﺸﺘﺎﻭﺭ ﻛﻤﻜﻲ ﻫﻢﻓﺎﺯ ﻭ ﺳﺎﺯﮔﺎﺭ ﺑﺎ ﺣﺮﻛﺖ ﻃﺒﻴﻌﻲ اﻧﺴﺎن ﺗﻮﻟﻴﺪ ﻛﻨﺪ. ﺑﺮاي اﺭﺯﻳﺎﺑﻲ ﻋﻤﻠﻜﺮد، اﻟﮕﻮﺭﻳﺘﻢ ﭘﻴﺸﻨﻬﺎدي اﺑﺘﺪا ﺑﺮ ﺭﻭي دادهﻫﺎي ﺷﺒﻴﻪﺳﺎﺯيﺷﺪه ﻭ ﺳﭙﺲ ﺑﺮ ﺭﻭي دادهﻫﺎي ﻭاﻗﻌﻲ ﺭاهﺭﻓﺘﻦ ﺭﻭي ﺗﺮدﻣﻴﻞ ﺁﺯﻣﺎﻳﺶ ﺷﺪ. ﻧﺘﺎﻳﺞ ﻧﺸﺎن داد ﻛﻪ دﺭ ﻣﻘﺎﻳﺴﻪ ﺑﺎ ﻧﺴﺨﻪﻫﺎي ﻛﻼﺳﻴﻚ ﻧﻮﺳﺎﻧﮕﺮ ﺗﻄﺒﻴﻘﻲ (ﺗﻚ ﻧﻮﺳﺎﻧﮕﺮ ﻭ ﭼﻨﺪ ﻧﻮﺳﺎﻧﮕﺮ)، ﻣﺪل ﭘﻴﺸﻨﻬﺎدي دﻗﺖ ﺑﺎﻻﺗﺮ (ﺟﺬﺭ ﻣﻴﺎﻧﮕﻴﻦ ﻣﺮﺑﻌﺎت ﺧﻄﺎ (RMSE) ﺯاﻭﻳﻪ 0/015 ﺭادﻳﺎن)، ﻫﻤﮕﺮاﻳﻲ ﺳﺮﻳﻊﺗﺮ (1/76 ﺛﺎﻧﻴﻪ) ﻭ ﭘﺎﻳﺪاﺭي ﺑﻴﺸﺘﺮي دﺭ ﺷﺮاﻳﻂ ﮔﺬﺭا داﺭد. ﻫﻤﭽﻨﻴﻦ، دﺭ ﺷﺒﻴﻪﺳﺎﺯي ﺗﻌﺎﻣﻞ اﻧﺴﺎن–اﺳﻜﻠﺖ ﺑﻴﺮﻭﻧﻲ ﻣﺤﻴﻂ Simscape، ﮔﺸﺘﺎﻭﺭ ﻛﻤﻜﻲ ﭘﻴﺸﻨﻬﺎدي ﻣﻮﺟﺐ ﻛﺎﻫﺶ ﻣﻴﺎﻧﮕﻴﻦ ﻫﺰﻳﻨﻪ ﮔﺸﺘﺎﻭﺭي ﻣﻔﺎﺻﻞ ﻟﮕﻦ ﻭ ﺯاﻧﻮ ﺑﻪﺗﺮﺗﻴﺐ %56 ﻭ %52 ﺷﺪ. ﺗﺤﻠﻴﻞ ﭘﺎﻳﺪاﺭي ﻧﻴﺰ ﺑﺎ اﺳﺘﻔﺎده اﺯ ﻣﺴﻴﺮ ﻓﺎﺯي ﻭ ﻧﮕﺎﺷﺖ ﭘﻮاﻧﻜﺎﺭه، ﻭﺟﻮد ﭼﺮﺧﻪ ﺣﺪي ﭘﺎﻳﺪاﺭ ﺭا ﺗﺄﻳﻴﺪ ﻛﺮد. اﻳﻦ دﺳﺘﺎﻭﺭد ﻧﺸﺎن ﻣﻲدﻫﺪ ﻛﻪ اﺳﺘﻔﺎده اﺯ ﻧﻮﺳﺎﻧﮕﺮﻫﺎي ﺗﻄﺒﻴﻘﻲ ﺑﻪ ﻫﻤﺮاه ﺟﺒﺮانﺳﺎﺯ ﻓﺎﺯ، ﻣﻲﺗﻮاﻧﺪ ﺭاﻫﻜﺎﺭي ﻛﺎﺭﺁﻣﺪ ﺑﺮاي ﺗﻮﺳﻌﻪ اﺳﻜﻠﺖﻫﺎي ﺑﻴﺮﻭﻧﻲ ﻧﺴﻞ ﺟﺪﻳﺪ ﺑﺎﺷﺪ؛ ﺭاﻫﻜﺎﺭي ﻛﻪ ﺑﺪﻭن ﻧﻴﺎﺯ ﺑﻪ ﻣﺪلﺳﺎﺯي ﭘﻴﭽﻴﺪه ﻳﺎ دادهﻫﺎي ﺣﺠﻴﻢ ﺁﻣﻮﺯﺷﻲ، اﻣﻜﺎن اﺭاﺋﻪ ﻛﻤﻜﻲ ﭘﺎﻳﺪاﺭ، ﻃﺒﻴﻌﻲ ﻭ ﻣﻮﺭد ﺭﺿﺎﻳﺖ ﻛﺎﺭﺑﺮ ﺭا ﻓﺮاﻫﻢ ﻣﻲﺳﺎﺯد.
چكيده انگليسي :
Powered exoskeletons, as one of the most advanced assistive technologies, play a crucial role in enhancing muscular strength, improving movement quality, and reducing joint loads. The success of these systems de- pends on their ability to synchronize precisely with the user’s motion pattern. Therefore, the development of control algorithms capable of adapting online to variations in walking speed, amplitude, and phase is essential. In this thesis, a novel approach based on an adaptive oscillator with a phase compensator is proposed. Using hip joint angle signals and ground reaction force, the method accurately estimates the gait cycle phase and generates an assistive torque that is phase-aligned and compatible with natural human movement. To evaluate performance, the proposed algorithm was first tested on simulated datasets and then validated on real treadmill walking data. Results demonstrated that, compared to classical adaptive oscillator models (single-oscillator and multi-oscillator), the proposed method achieved higher accuracy (hip angle RMSE of 0.015 rad), faster conver- gence (0.176 gait cycles), and greater stability under transient conditions. Moreover, in a human-exoskeleton interaction simulation environment in Simscape, the proposed assistive torque reduced the average hip and knee joint torque costs by 56% and 52%, respectively. Stability analysis using phase portraits and Poincare mapping also confirmed the existence of a stable limit cycle. These findings indicate that adaptive oscillators combined with phase compensation provide an efficient solution for the development of next-generation exoskeletons, offering stable, natural, and user-acceptable assistance without requiring complex modeling or large training datasets.