توصيفگر ها :
دي اكسيد كربن , فسكيوي بلند , گياه پالايي , اندوفيت , كادميم , كيفيت خاك
چكيده فارسي :
شرايط پيچيده محيطي مانند آلودگي به فلزات سنگين و افزايش غلظتCO₂ ميتوانند موجب بروز انواع تنشهاي فيزيولوژيك در گياهان شده و عملكرد محصولات كشاورزي را در سطح جهاني كاهش دهند. كادميم بهعنوان يك فلز غيرضروري و آلاينده مهم خاك، با ايجاد تنش اكسيداتيو آثار منفي قابلتوجهي بر رشد گياه و سلامت انسان دارد. افزايش غلظت دياكسيدكربن از يك سو و افزايش غلظت فلزات سنگين از سوي ديگر از مهمترين چالشهاي دنياي امروز است. بهمنظور بررسي آثار تركيبي افزايش غلظت CO₂، آلودگي به كادميم، نوع بافت خاك و همزيستي اندوفيت Epichloë با دو ژنوتيپ فسكيوي بلند يا B) Festuca arundinacea 75 و C75(، يك آزمايش گلخانهاي با آرايش فاكتوريل تيمارها در قالب طرح كاملاً تصادفي و با تجزيه و تحليل فاكتوريل و تاگوچي دادهها انجام شد. گياهان تحت دو سطح آلودگي كادميم (Cd⁺/Cd⁻)، دو نوع بافت خاك (لوم رسي و لوم شني)، دو سطح CO₂ معمولي و ppm 700 و دو وضعيت آلودگي اندوفيتي (E⁺/E⁻) كشت شدند. پس از هفت ماه، شاخصهاي عملكرد و گياهپالايي، غلظت كادميم، آهن، مس، روي و منگنز در شاخساره و ريشه، نسبت Fv/Fm، كلروفيلa ،b و كاروتنوئيدها اندازهگيري شدند. علاوه بر اين، ويژگيهاي فيزيكي خاك مانندآبگريزي، شاخصهاي پايداري ساختمان خاك، حجم منافذ خاك، منحني مشخصه رطوبتي و شاخص كيفيت خاك، كربن آلي و تنفس خاك ارزيابي شد. نتايج نشان داد كه حضور اندوفيت و افزايشCO₂ بهويژه در ژنوتيپ B75 موجب افزايش معنيدار عملكرد و بهبود توان گياه در گياهپالايي كادميم شد. همچنين مشخص گرديد كه بافت خاك لوم رسي با ايجاد شرايط پايدارتر براي ساختمان خاك و بهبود حركت آب و عناصر غذايي، نقش مهمي در افزايش توان گياه براي مقابله با تنش كادميم دارد. غنيسازي با CO2 با وجود تاثير بر افزايش جذب فلزات سنگين، بهواسطه بهبود فتوسنتز و افزايش ترشحات ريشهاي موجب ارتقاي رشد ريشه و تحريك فعاليت ميكروبي خاك گرديد. آزمايش فاكتوريل و همچنين روش تاگوچي نشان داد كه غلظتCO₂ و بافت خاك مهمترين عوامل مؤثر بر گياهپالايي هستند و در اولويت بالاتري نسبت به ژنوتيپ و حضور اندوفيت قرار دارند. بهطور كلي، نتايج اين پژوهش نشان ميدهد كه انتخاب ژنوتيپ مقاوم همراه با غنيسازي CO₂ و حضور اندوفيت ميتواند كارآيي گياهپالايي كادميم را بهويژه در خاكهاي ريزبافت بهطور معنيداري افزايش دهد.
چكيده انگليسي :
Complex environmental conditions like heavy metal contamination and elevated CO2 concentration may cause numerous plant stresses and lead to considerable crop losses worldwide. Cadmium is a non-essential element and potentially highly toxic soil metal pollution, causing oxidative stress in plants and human toxicity. In order to assess a combination of complex factors on the responses of two genotypes of Festuca arundenacea (75B and 75C), a greenhouse experiment was conducted on plants grown in two Cd-contaminated soil conditions and two soil textures under combined effects of elevated and ambient CO2 (700 ppm) and Epichloe endophyte infection. Plant biomass, Cd, Fe, Cu, Zn, and Mn concentrations in the plant shoots and roots, Fv/Fm, and chlorophyll (a & b), and carotenoid contents were measured after seven months of growth in pots. Soil physical properties, soil quality index, respiration and soil organic carbon were measured. Our results showed that endophyte-infected plants (E+) grown in elevated CO2 atmosphere (CO2+), clay-loam soil texture (H) with no Cd amendment (Cd-) in the genotype 75B had significantly greater shoot and root biomass than non-infected plants (E-) grown in ambient CO2 concentration (CO2-), sandy-loam soil texture (L) with amended Cd (Cd+) in the genotype 75C. Increased CO2 concentration and endophyte infection, especially in the genotype 75B, enabled Festuca for greater phytoremediation of Cd because of higher tolerance to Cd stress and higher biomass accumulation in the plant genotype. However, CO2 enrichment negatively influenced the plant mineral absorption due to the inhibitory effects of high Cd concentration in shoots and roots. It is concluded that Cd phytoremediation can be positively affected by the increased atmospheric CO2 concentration, tolerant plant genotype, heavy soil texture, and Epichloe endophyte. Using Taguchi, it is predicted that the most critical factors affecting Cd phytoremediation potential are CO2 concentration and soil texture (environmental conditions). Soil texture was identified as the first and most important factor affecting the physical properties of the soil (including soil structure and its stability). Since any change in soil structure and its stability leads to significant changes in the absorption and movement of water and nutrients, subsequently influencing root growth and ultimately plant growth on one hand, and on the other hand results in changes in soil quality and health, it was necessary to study the structural properties of the soil. The 75B genotype of Festuca had a greater impact on the physical properties of the soil compared to the 75C genotype. The effect of elevated carbon dioxide concentration and the presence of endophyte on physical properties requires more time and more detailed studies. Increased photosynthesis can lead to enhanced plant growth and yield, as well as an increase in root exudation. Enhanced root growth along with increased root exudates affects water and nutrient uptake as well as soil microbial population and activity. Basal microbial respiration was higher under elevated carbon dioxide conditions, although this difference was not significant. This trait was more pronounced in genotype 75B, clay soil texture, and in the presence of symbiosis. The increase in microbial and plant exudates play as a key and fundamental role in improving soil structural properties, enhancing soil stability, and consequently improving plant growth and nutrient uptake.