شماره مدرك :
20915
شماره راهنما :
17966
پديد آورنده :
رضايي پندري، فاطمه
عنوان :

مطالعه تاثير نوسانات قيمت بر بازار جهاني فلزات

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
علوم داده
محل تحصيل :
اصفهان : دانشگاه صنعتي اصفهان
سال دفاع :
1404
صفحه شمار :
سيزده،66ص. :مصور،جدول،نمودار
توصيفگر ها :
شبكه عصبي پيچشي , حافظه بلندمدت - كوتاه مدت , تحليل تكنيكي , پيش بيني قيمت طلا , شاخص هاي اقتصادي , يادگيري عميق
تاريخ ورود اطلاعات :
1404/10/07
كتابنامه :
كتابنامه
رشته تحصيلي :
رياضي كاربري
دانشكده :
رياضي
تاريخ ويرايش اطلاعات :
1404/11/18
كد ايرانداك :
23181158
چكيده فارسي :
براي (LSTM) و حافظه بلندمدت - كوتاه مدت (CNN) در اين پژوهش، يك مدل تركيبي از شبكه هاي عصبي پيچشي پيش بيني جهت حركت قيمت طلا ارائه شده است. هدف اين تحقيق، بهره گيري از توانايي شبكه هاي عصبي در شناسايي الگوهاي پنهان در داده هاي بازار مالي و به كارگيري آن براي تصميم گيري دقيق تر در معاملات مالي است. براي اين منظور، از داده هاي تحليل فني در كنار برخي شاخص هاي اقتصادي كلان مانند قيمت نفت خام، نرخ برابري دلار به ين ژاپن، شاخص بازار سهام آمريكا، شاخص ارزش دلار آمريكا و قيمت ارزهاي ديجيتال استفاده شده است. پساز جمع آوري و پيش پردازشداده ها، مدل طراحي و آموزش داده شده و عملكرد آن با استفاده از معيارهايي مانند خطاي ميانگين ارزيابي شده است. نتايج نشان مي دهد كه مدل پيشنهادي قادر است بادقت مناسبي، جهت تغييرات قيمت طلا را پيش بيني كند و مي تواند در تصميم گيري هاي مرتبط با سرمايه گذاري مورد استفاده قرار گيرد.
چكيده انگليسي :
The global metals market, particularly the gold market, plays a critical role in ensuring the overall stability an‎d performance of international financial systems. Due to its well-established position as a safe-haven asset, gold is widely regarded by investors as a strategic hedge against periods of economic uncertainty, elevated inflation levels, geopolitical tensions, an‎d fluctuations in global currency valuations. However, the price of gold is inherently volatile an‎d affected by a diverse range of macroeconomic variables, including supply-deman‎d dynamics, inflation expectations, interest rate adjustments, currency index movements, an‎d global equity an‎d commodity market behavior. Consequently, predicting trends in gold price movements remains a highly challenging an‎d strategically significant topic within financial analysis, investment planning, an‎d risk management. Traditional econometric approaches, such as autoregressive moving average (ARMA) an‎d generalized autoregressive conditional heteroskedasticity (GARCH) models, have been widely used to model the statistical properties of gold price time series. Nevertheless, these models often struggle to effectively capture nonlinear dependencies, highdimensional interactions, an‎d long-memory characteristics inherent in real-world financial markets. To overcome these limitations, recent studies have increasingly turned to deep learning methodologies, particularly recurrent neural networks such as Long Short-Term Memory (LSTM) structures an‎d Convolutional Neural Networks (CNN), due to their superior capacity to extract hidden, complex patterns from sequential financial data. In this research, a hybrid deep learning architecture based on the integration of CNN an‎d LSTM (CNN–LSTM) networks is proposed to predict short-term directional movements in gold prices. The CNN layer is utilized to extract spatial an‎d structural features from historical pricing an‎d technical indicator data, while the LSTM layer captures temporal dependencies an‎d long-term behavioral trends present in the underlying financial series. Furthermore, the model incorporates several influential macroeconomic an‎d financial market indicators, such as the U.S. Dollar Index (DXY), West Texas Intermediate (WTI) crude oil prices, the S&P 500 index, the USD/JPY exchange rate, an‎d the price of Bitcoin, each of which has been empirically demonstrated to contribute to volatility patterns in the gold market. The dataset for this study was collected from reliable international financial databases an‎d underwent a series of preprocessing steps, including normalization, resampling, an‎d feature-scaling operations, before being partitioned into training an‎d testing subsets. Model training was conducted using backpropagation through time, with mean squared error (MSE) employed as the primary loss function an‎d adaptive learning-rate optimization techniques applied to enhance convergence stability an‎d computational efficiency.
استاد راهنما :
ساره گلي فروشاني
استاد داور :
زهرا صابري , حامد لروند
لينک به اين مدرک :

بازگشت