شماره مدرك :
2600
شماره مدرك :
2635پ
شماره راهنما :
2759
پديد آورنده :
معتمدي، نوروز
عنوان :

شبيه سازي شناسايي چهره با استفاده از مدل ماركف مخفي و شبكه هاي عصبي

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
مخابرات
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده برق و كامپيوتر
سال دفاع :
1383
صفحه شمار :
نه، 74، [II]ص .: مصور، جدول، شكل، عكس، نمودار
استاد راهنما :
سعيد صدري
استاد مشاور :
علي محمد دوست حسيني
توصيفگر ها :
روش ICA،SVM،SVD,LDA‏،تبديل موجكGabor , مدل هاي پرتاب سكه و تاس , مدل توپ و گلدان , پارامترهاي HMM
تاريخ نمايه سازي :
15/04/84
استاد داور :
محمود مدرس هاشمي، رسول امير فتاحي
تاريخ ورود اطلاعات :
1395/11/20
كتابنامه :
كتابنامه
رشته تحصيلي :
برق و كامپيوتر
دانشكده :
مهندسي برق و كامپيوتر
كد ايرانداك :
ID2759
چكيده فارسي :
به فارسي و انگليسي : قابل رويت درنسخه ديجيتالي
چكيده انگليسي :
Abstract Over the last thirty years researchers in neural networks image processing andcomputer vision have investigated a number of issues related to face recognition by humanand machine Machine recognitIon of faces from still and video images has severalapplications such as static matching of controlled format photographs such as passports credit cards drivers license and mug shots to real time matching of surveillance videoimages Such applications have different constraints in terms of complexity of processingrequirements and consclusively a wide different technical challenges are presented Existing techniques and systemshave beenexamined on different sets of images of variouscomplexity Automatic face recognition is one of the difficult challenges in patternrecognition Usually human faces are similar in structure and very little differences indifferent faces Illumination conditions facial expression and face orientation result in thatface recognition be one of the most difficult problem in pattern recognition At the beginning of this thesis several methods of face recognition are reviewd Thenone of the statistical robust methods with Hidden Markov Model is studied and result ofsimulation of face recogniton by continous Hidden Markov Model using Karhunen Loeveexpansion with Matlab software is presented And then face recogniton simulated by MLPand RBF neural networks and these results are compared At the end of thesis structure ofRBF compared with HMM and summary of results are presented r It I d v J I
استاد راهنما :
سعيد صدري
استاد مشاور :
علي محمد دوست حسيني
استاد داور :
محمود مدرس هاشمي، رسول امير فتاحي
لينک به اين مدرک :

بازگشت