پديد آورنده :
شهيدي ريزي، عليرضا
عنوان :
توسعه روش نوار محدود و اجزائ محدود طبقاتي در تئوري الاستيك كوزرات
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده عمران
صفحه شمار :
نه، 151، [II]ص.: مصور، جدول، شكل، نمودار
يادداشت :
ص. ع. به فارسي و انگليسي
استاد راهنما :
مجتبي محزون، مجيد مهدي سعادتپور
استاد مشاور :
مجتبي ازهري
توصيفگر ها :
كرنش و انحناء , بقاء جرم , قانون دوم ترموديناميك , معادلات همسازي , كلازيوس-دوهم , حركت ديركتور، صلب الحاقي , تئوري كريشف- لاو , ماتريسهاي سختي , درون يابي ميدان جابجائي , بار استاتيكي عرضي , ورق متوازي الاضلاع
استاد داور :
محمود همامي، رضا نقدآبادي، بيژن برومند
تاريخ ورود اطلاعات :
1395/08/25
كد ايرانداك :
ID125 دكتري
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتالي
چكيده انگليسي :
Abstract The outgrowth of research activity presented in this thesis can be summarized in three parts Part 1 Using elastic Cosserat theory a finite strip scheme is developed to analyze very large deformations of thin plates The principle of virtual work is exploited to present the weak form of the governing differential equations Through a linear mapping a rectangular strip is transfon1 ed into a standard square computational domain in which the deformation and director fields are developed together with the general forms of the uncoupled nonlinear equations The geometric and material tangential stiffness m trices are formed through linearization and a step by step procedure is presented to complete the scheme The validity and the accuracy of the method are illustrated through certainnumerical examples and comparison of the results with other researches The method is shown to be capable of handling numerical analysis of plates experiencing very largedeformations Part 2 By interpolation of displacement and director fields on the whole domain of arbitrary quadrilateral or triangular plate and using elastic Cosserat theory ahierarchical finite element scheme is developed to analyze very large deformations of thinplates in static and post buckling behavior under end shortening The principle of virtualwork is exploited to present the weak form of the governing differential equations Through a linear mapping a quadrilateral or triangular plate is transformed into a standardcomputational domain in which the deformation and director fields are developed togetherwith the general forms of the uncoupled nonlinear equations The geometric and materialtangential stiffness matrices are formed through linearizati9n and a step by step procedureis presented to complete the method The validity and the accuracy of the method areillustrated through certain numerical examples and comparison of the results with otherresearches Part 3 Large deformati on of a thin rectangular plate is studied usingKirchhoff Love theory The numerical investigation is based on the mapping of the plateonto the computational coordinates of a standard square and interpolation of thedisplacement field over the whole domain with no director assi ent The presentinvestigation which is basically a limiting analysis of the Cosserat s theory enforces thewell known Kirchhoffs hypothesis which denies the e istence of shear strain in thedirection of the plate s thickness After forming the decoupled nonlinear equations thematerial and geometric tangential stiffness matrices are derived through a linearizationprocess and different stages of the problem solution are presented Finally through certainnumerical examples and comparison of the results with some existing researchesthevalidity and the accuracy of the present method are verified t i llt Ii 1 1
استاد راهنما :
مجتبي محزون، مجيد مهدي سعادتپور
استاد مشاور :
مجتبي ازهري
استاد داور :
محمود همامي، رضا نقدآبادي، بيژن برومند