شماره مدرك :
3044
شماره راهنما :
130 دكتري
پديد آورنده :
واحد پور، مرتضي
عنوان :

محاسبه زمان آسايش ويسكوزيته برشي و توده اي براي سيالات كره نرم ولنارد جونز

مقطع تحصيلي :
دكتري
گرايش تحصيلي :
﴿شيمي﴾
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده شيمي
سال دفاع :
1384
صفحه شمار :
[الف]، ده، 116، [II]ص.: مصور، جدول، شكل، نمودار
يادداشت :
ص. ع. به فارسي و انگليسي
استاد راهنما :
بيژن نجفي، عزت كشاورزي
توصيفگر ها :
مدولوس برشي , سيال كره نرم، لنارد جونز , قانون نيوتن , فركانس صفر , آسايش توده اي , ويسكوالاستيسيته , ويسكوزيته توده اي
استاد داور :
يوسف غايب، محمد هادي قطعي، الهه كفشدا ر گوهرشادي، ناهيدفرضي
تاريخ ورود اطلاعات :
1396/01/29
كتابنامه :
كتابنامه
رشته تحصيلي :
شيمي
دانشكده :
شيمي
كد ايرانداك :
ID130 دكتري
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتالي
چكيده انگليسي :
ItC cAbstractWhen a mechanical force is suddenly applied to a fluid the fluid initially respondselastically as if it were a rigid solid body The initial responsemay be describedby twoquantities the high frequencylimit of the shear modulus or modulus of rigidity G andthe high frequencylimit of the bulk modulusKQ modulusof compression orIn this work we investigated the density and temperature behavior of the infinite frequencybulk modulus and bulk relaxationtimes for soft sphere SS and Lennard Jones U fluids and calculatedalso infinite frequencyshear modulusand shearrelaxationtimes In the first step the high frequency limit of the shearmodulus G and shear relaxationtime 1 sh ar obtained using the Zwanzig Mountainequationfor soft spherefluids and arealso Lennard Jonespotentials with Matteoli Mansoori radial distribution function Calculated shearrelaxation time are shown that the shearrelaxation times for soft sphereand Lennard Jones fluids of different isothermspass through a minimum at a specificreduced density of about 0 7 which indicates a change from fluid like behavior toviscoelastic behavior It is also shown that the plot of the reduced relaxation time forLennard Jones fluids versus reduced density for different isotherms superimopsableon auniversal curve In the secondstep the density and temperature dependence the bulk modulus is studied of for soft sphere and Lennard Jones fluids In thesecalculations Zwanzig Mountain integral equation is solved numerically by using Hansen Weis radial distribution function for soft spherefluid The bulk modulus increases with densityand temperaturethat correspond with normal force value with densityand temperature bulk relaxationtime determined The by using Hoover et al molecular dynamic simulationresults for bulk viscosity and their soft sphereequationof state for adiabatic bulk modulus and calculated infinite frequency of bulk modulus It is shown that the bulk relaxationtime for soft spherefluid decreases monotonically with density after passinga maximum and increaseswith temperature The origin of the maximum related to the bulk viscosity For Lennard Jones fluids the Zwanzig Mountain integral equation is solved by numerical integration of the equation using Matteoli Mansoori radial distribution function Infant frequencyof bulk modulus are shownthe bulk modulus have the samebehaviorfor soft spherefluids The bulk relaxationtimes for Lennard Jonesfluids are determined using Meier et al molecular dynamic simulation results for bulk viscosity and Mecke et al soft sphereequationof state for zero frequencyof bulk modulus The relaxationtime for isothermsless than 2 1 decrease with density after passinga maximum and increasewith densitymore than reduce densityequalto0 85 I t lJJ 1f 1I f I l1
استاد راهنما :
بيژن نجفي، عزت كشاورزي
استاد داور :
يوسف غايب، محمد هادي قطعي، الهه كفشدا ر گوهرشادي، ناهيدفرضي
لينک به اين مدرک :

بازگشت