پديد آورنده :
خامسي پور ، امير
عنوان :
تحليل انتشار موج لاو در محيط هاي نامحدود با مرزهاي جانبي غير قائم به روش لايه هاي نازك
مقطع تحصيلي :
كارشناسي ارشد
محل تحصيل :
اصفهان : دانشگاه صنعتي اصفهان ، دانشكده عمران
صفحه شمار :
نه ، 76 ، [ II ] ص . : مصور ، نمودار ، جدول
يادداشت :
ص.ع. به فارسي و انگليسي
استاد راهنما :
فرهاد بهنام فر
استاد مشاور :
بيژن برومند
توصيفگر ها :
تئوري انتشارموج , ماتريس سختي , شرايط مرزي , معادله حركت , هايپر المان
استاد داور :
حميد هاشم الحسيني ، امير مهدي حلبيان
چكيده فارسي :
به فارسي و انگليسي : قابل رؤيت در نسخه ديجيتال
چكيده انگليسي :
AbstractThe main purpose in this thesis is to obtain the stiffness matrix for an irregular and non vertical boundary to analyze the soil structure interaction by Thin Layer Method TLM This method analyses the wave propagation in layered media as like as the surface soil inthe earth It is assumed that the variation of soil properties in the regularly layered mediais perpendicular to the layer plains and is in vertical direction The soil properties arehomogenous in horizontal direction In this method the wave propagation is analyzedusing the continuum equations in horizontal direction In the other direction perpendicular to the layer plains a numerical solution is used This formulation leads tothe stiffness matrix of a vertical boundary An extra mesh with a set of nodes must bedefined for the intersection of vertical boundary and an irregular zone to assemble thetwo systems In this technique with assuming the non vertical boundary with arbitraryshape a number of hyper elements which their boundaries contain the nodal points at thenon vertical boundary are assumed With determining the stiffness matrices of hyperelements and assembling them to prepare the matrix of total system and condensing thismatrix the stiffness matrix of the non vertical boundary can be achieved The formulation of this method can be written in time or frequency domain here it iswritten in frequency domain The input of the written program are frequency of wavepropagation and geometric properties of the medium The results can be transferred totime domain by the Fourier transform to obtain the real nodal displacements Earthquake waves are commonly divided into two types called Love waves and Rayleighwaves For the Love waves the motion of particles is perpendicular to the propagationdirection and in Rayleigh waves it is in the propagation plain In this thesis the stiffnessmatrix is determined for the first type of waves and the results are checked by solvingsome examples
استاد راهنما :
فرهاد بهنام فر
استاد مشاور :
بيژن برومند
استاد داور :
حميد هاشم الحسيني ، امير مهدي حلبيان