شماره مدرك :
3690
شماره راهنما :
3490
پديد آورنده :
ديباجيان، حسين
عنوان :

استفاده از ميانيابي كريجينگ در روش هاي بدون المان

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
طراحي كاربردي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده مكانيك
سال دفاع :
1386
صفحه شمار :
هفت، [84]، [II]ص.: مصور، نمودار
يادداشت :
ص. ع. به فارسي و انگليسي
استاد راهنما :
محمود فرزين، حميد هاشم الحسيني
استاد مشاور :
نادر فتحيان پور
توصيفگر ها :
ميانيابي نقطه اي , تئوري احتمال , MLPG
تاريخ نمايه سازي :
19/6/86
استاد داور :
سعيد ضيايي راد، محمدرضا فروزان
تاريخ ورود اطلاعات :
1396/02/25
كتابنامه :
كتابنامه
رشته تحصيلي :
مكانيك
دانشكده :
مهندسي مكانيك
كد ايرانداك :
ID3490
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتال
چكيده انگليسي :
AbstractConstruction of an effective and suitable shape function is vastly studied in mesh freemethods In current methods of construction of shape functions the filed variables areconsidered categorical values whereas this assumption is not generally true On the other hand these constructing methods can be assorted in three classes Integral representation methods Finite series representation methods Finite difference representation methodsIn all these methods shape functions are constructed using position of nodal values andvariation of filed variable has no effect on the shape functions Furthermore a majority ofcurrent methods are sensitive to variation of nodes density Meanwhile correlation betweenpoints and their distances at the influence domain has no effect on the shape functions Consequently these methods are not suitable at the boundaries Using statistical methodscan improve these shortcomings In this study the nodal values are assumed to be random parameters A new interpretationfor the weight function in MLS method has been suggested using this assumption Furthermore the Kriging method which is basically a statistical approach is used toconstruct shape functions The subtleties and the suitability of these analyses have beenillustrated in various examples Importance and applicability of Kriging are shown in fourvarious mesh less methods Since the MLS approximation can not satisfy the Kronecker delta function near theessential boundaries a new method is presented to obviate this problem Another new attempt that is accomplished in this study is combination of the MLPG2 andMLPG5 for modification of the finite point method
استاد راهنما :
محمود فرزين، حميد هاشم الحسيني
استاد مشاور :
نادر فتحيان پور
استاد داور :
سعيد ضيايي راد، محمدرضا فروزان
لينک به اين مدرک :

بازگشت