پديد آورنده :
بهزادجزي، محسن
عنوان :
كاربرد ماشين هاي بردار پشتيبان در مدلسازي منابع آب
مقطع تحصيلي :
كارشناسي ارشد
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده عمران
صفحه شمار :
هشت، 84، [II]ص.: مصور، جدول، نمودار
يادداشت :
ص. ع. به فارسي و انگليسي
استاد راهنما :
كيوان اصغري
استاد مشاور :
مازيار پالهنگ
توصيفگر ها :
كمينه سازي خطا , هموار سازي
تاريخ نمايه سازي :
30/04/87
استاد داور :
حميدرضا صفور، سعيد اسلاميان
تاريخ ورود اطلاعات :
1396/03/07
چكيده فارسي :
به فارسي و انگليسي: قابل رؤيت در نسخه ديجيتال
چكيده انگليسي :
Abstract Water scarcity climate changes and hydrological uncertainties emphasize the necessity of a comprehensive and meaningful management of water resources which will be achieved by reliable models Harnessing and appropriate using of surface water developing the groundwater resources alleviating the inverse impacts of flood or drought and healthy drinking water supply require models with accurate prediction Data driven modeling is new and rapidly expanded in scientific and engineering research areas This method in some situations would be a proper substitution for other modeling approaches such experimental and physical ones In this research the principles of a novel and advanced data driven technique called Support Vector Machines SVMs which is relied on statistical learning theory are discussed By applying this learning method generalization characteristic of the machine boosts and thus the model precision in comparison with other data driven techniques improves The aim of study is to present the underlying concepts of SVMs in order to learn complex physical processes and non linear behaviors of hydrological systems In this thesis the performance of learning machine is investigated within three various applications of water resources modeling consisting of 1 prediction of short term runoff 2 estimating the water level of a specific observation well and 3 spatial temporal forecasting of rainfall For implementing SVMs in the foregoing hydrological systems diverse combination of data is employed Analyzing and comparing the SVM results with the ones obtained through the artificial neural networks reveals the high prediction capability of SVM in the preceding applications The successful performance of SVMs throughout this research signifies the possibility of exploiting it in other water resources applications pdfMachine A pdf writer that produces quality PDF files with ease Produce quality PDF files in seconds and preserve the integrity of your original documents Compatible across nearly all Windows platforms simply open the document you want to convert click print select the Broadgun pdfMachine printer and that s it Get yours now
استاد راهنما :
كيوان اصغري
استاد مشاور :
مازيار پالهنگ
استاد داور :
حميدرضا صفور، سعيد اسلاميان