پديد آورنده :
شاملي، مصطفي
عنوان :
بررسي برخي از شرايط مرزي در روش شبكه بولتزمن
مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
تبديل انرژي
محل تحصيل :
اصفهان:دانشگاه صنعتي اصفهان ،دانشكده مكانيك
صفحه شمار :
نه، 92، [II] ص:جدول، نمودار
يادداشت :
ص. ع به: فارسي وانگليسي
استاد راهنما :
محمود اشرفي زاده
استاد مشاور :
احمد رضا پونچي
توصيفگر ها :
جريان پويزال صفحه اي
تاريخ نمايه سازي :
20/12/87
استاد داور :
ابراهيم شيراني، احمد رضا پيشه ور
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتال
چكيده انگليسي :
AbstractThe lattice Boltzmann method LBM is a particle based numerical scheme for calculating fluidflow problems Key advantages of the LBM are due to the fact that the solution for the particledistribution functions is explicit easy to implement and natural to parallelize These advantagesmake LBM as a powerful tool for simulating a wide variety of fluid dynamical applications Dueto its particulate nature and local dynamics investigating the flow behavior near the boundariesto construct suitable and accurate boundary conditions is of great importance in LBM Incontrast as the LBM often uses uniform regular Cartesian grids in space the method suffersfrom accuracy reduction in dealing with curved boundaries that cross the lattice edges Suchproblems cause the boundary treatment to be of great importance in LBM There are a lot ofboundary treatments proposed by different researchers especially for the velocity at a solid wallto increase the accuracy and efficiency of this method In this project different boundary conditions are investigated extensively The accuracy of theseboundary conditions are tested and compared against solving simple flow problems This projectmainly has focused on assessing no slip boundary conditions for solid walls An Investigation ofcurved boundary treatments is also presented here At the end of this project a method ispresented to evaluate the order of accuracy of boundary conditions in LBM and the accuracy ofsome no slip boundary conditions is calculated The presentation of a new scheme to accuratelytreat the boundary conditions for curved geometries is an innovation in this work
استاد راهنما :
محمود اشرفي زاده
استاد مشاور :
احمد رضا پونچي
استاد داور :
ابراهيم شيراني، احمد رضا پيشه ور