پديد آورنده :
موحديان عطار، بشير
عنوان :
استفاده از توابع پايه نمايي در حل برخي معادلات ديفرانسيل چندبعدي در مكان و زمان
مقطع تحصيلي :
كارشناسي ارشد
محل تحصيل :
اصفهان:دانشگاه صنعتي اصفهان، دانشكده عمران
صفحه شمار :
[ده]، 125، [II] ص: مصور، جدول، نمودار
يادداشت :
ص.ع. به: فارسي و انگليسي
استاد راهنما :
بيژن برومند
استاد مشاور :
محمدمهدي سعادتپور
توصيفگر ها :
معادلات ديفرانسيل سه بعدي , معادلات ديفرانسيل وابسته به زمان , تبديل ويژه , روش بدون شبكه
تاريخ نمايه سازي :
1388/2/27
استاد داور :
حميد هاشم الحسيني، مجتبي ازهري
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتال
چكيده انگليسي :
Dr Bijan Boroomand boromand@cc iut ac irAbstractIn this dissertation exponential basis functions method EBFs has been developed forsolving partial differential equations in 3D space and also for initial boundary valueequations In this method the homogeneous part of differential equations isapproximated in linear combination of exponential basis functions A specialtransformation has been used for computing constant coefficients Choosingfundamental basis which form solutions series plays an important role in exactcomputation of the equation solution For this reason a new pattern has been proposedfor choosing basis functions on the basis of determining the fluctuation measure ofboundary conditions The efficiency of this new pattern in solving some 2D equationshas been investigated Later on after developing the formulation of EBFs method forsolving 3D and initial boundary value equations the new pattern of choosing EBFs hasbeen extended for solving these equations EBFs method along with presenting newchoosing pattern has been developed also for computing particular solution of 3Ddifferential equations Solving Laplace Helmholtz and Elastic wave differential equations in EBFs methodhave been considered in this thesis as the most important and the most useful 3Dequations Also as the first step in developing EBFs method solving two 1D transientheat equation and time dependent convection diffusion have been investigated forsolving initial boundary value equations The solved examples show that using EBFsmethod along with new choosing pattern is well enough able to solve different problemswith any boundary conditions with fluctuations from low to high Key WordsExponential Basis Functions EBFs 3D differential equations Time dependentdifferential equations Special discrete transformation Meshless metohd
استاد راهنما :
بيژن برومند
استاد مشاور :
محمدمهدي سعادتپور
استاد داور :
حميد هاشم الحسيني، مجتبي ازهري