شماره مدرك :
5061
شماره راهنما :
4758
پديد آورنده :
عباسي، زهره
عنوان :

كاربرد روش نيوتن جهت حل مسائل برنامه ريزي خطي در مقياس بزرگ

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
سيستمهاي اقتصادي-اجتماعي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده صنايع و سيستم ها
سال دفاع :
1388
صفحه شمار :
ده،93ص.:جدول،نمودار
يادداشت :
ص.ع.به: فارسي و انگليسي
استاد راهنما :
ناصر ملاوردي
استاد مشاور :
نادرشتاب بوشهري
توصيفگر ها :
همگرايي , KKT , تحقيق كانزو،گليكف و مانگاساريان
تاريخ نمايه سازي :
88/12/10
استاد داور :
رضا حجازي
دانشكده :
مهندسي صنايع و سيستم ها
كد ايرانداك :
ID4758
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتالي
چكيده انگليسي :
Using the Newton s method for solving large scale linear programming Zohreh Abasi z abasi@in iut ac ir Date of Submission 2009 11 18 Department of industrial system engineering Isfahan University of Technology Isfahan 84156 83111 Iran Degree M Sc Language FarsiSupervisor Naser mollaverdi naserm@cc iut ac irAbstractBy linear programming we can achieve the best result maximum profit or minimum cost in particular conditions One of the most efficient tools for solving linear problem is simplex method Simplex algorithm is not efficient forlarge scale programs Since real problem because of existence of many variables and constraints designs in largescale we need to an algorithm that converges to solution fast These programs exist in data mining machinelearning and classification and so on Simplex algorithm is not efficient in parallel calculation too Recentresearches show that application of simplex algorithm in parallel calculation is not desired Recently manyresearches are studied about it and created various methods One of these is Newton algorithm that converts thelinear program to an unconstrained nonlinear program In this paper we develop one of the method of recentresearches for more structure of linear programming by using of decrease iterative algorithm and based on Newtonmethod and penalty functions we present an efficient method for solving large scale linear programs For this weprove the method and then test it with random numerical problems The result show that proposed method isefficient enough and has sufficient accuracy and speed Therefore we have presented a fast Newton lgorithm forsolving a class of linear programs and computational testing on test problems with a very large number ofconstraints and a moderate number of variables demonstrate the effectiveness of the proposed method in comparisonwith a state of the art linear programming solver for this class of linear programs with three indices primalsolvability dual solvability and norm of difference of primal and dual objective function Key Wordslinear programming Newton method convergence
استاد راهنما :
ناصر ملاوردي
استاد مشاور :
نادرشتاب بوشهري
استاد داور :
رضا حجازي
لينک به اين مدرک :

بازگشت