پديد آورنده :
علاقمندان، محمود
مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
رياضي محض﴿آناليز هارمونيك﴾
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان،دانشكده رياضي
يادداشت :
ص.ع.به فارسي و انگليسي
استاد راهنما :
رسول نصر اصفهاني
استاد مشاور :
محمدرضا كوشش
توصيفگر ها :
جبر فوريه-اشتيليتس , جبر فون نويمن , جبرلبگ-فوريه
تاريخ نمايه سازي :
30/1/89
استاد داور :
سعيد مقصودي،فريد بهرامي
تاريخ ورود اطلاعات :
1396/09/28
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتالي
چكيده انگليسي :
Fourier Algebra Mahmood Alaghmandan m alaghmandan@math iut ac ir January 2 2010 Master of Science Thesis in Farsi Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 IranSupervisor Dr R Nasr Isfahani isfahani@cc iut ac ir2000 MSC Primary 43A20 43A30 43 03 42B10 Secondary 22D35 22D25 22D15 Key words Fourier Stieltjes Algebra Fourier Algebra Von Neumann Algebra Fourier Stieltjes Transform Fourier Transform Lebesgue Fourier Algebra AbstractWe commence by using from a new norm on L1 G the algebra of all integrable functionson locally compact group G to make the C algebra C G Consequently we nd its dualB G which is a Banach algebra so called Fourier Stieltjes algebra in the set of all continu ous functions on G We consider most of important basic theorems about this algebra Thisconsideration leads to a rather comprehensive knowledge about the Fourier Stieltjes algebra sideal Fourier algebra A G We study this last algebra and approach to its dual Accordingly we nd Von Neumannalgebra V N G the dual of A G and consider lots of its important properties Features ofV N G as a Von Neumann algebra widen our knowledge not only about V N G but alsoabout A G Studying Fourier algebra for locally compact Abelian group G we consider the identify rela tion between Fourier algebra and Fourier transformation for locally compact Abelian groups In this section we also explore relations between A G and L1 G for Abelin group G andits dual locally compact group G The mentioned relations bring about similarities betweenV N G and L G As a result we use from these relations to settle some subalgebras ofV N G as U C G W G and AP G In some special cases we elaborate on these subspacesinterrelations Eventually by de ning Segal algebras and abstract Segal algebras we establish Lebesgue Fourier algebra SA G Its dramatic property as a Segal algebra and even an abstract Segalalgebra for A G is followed in some theorems 1
استاد راهنما :
رسول نصر اصفهاني
استاد مشاور :
محمدرضا كوشش
استاد داور :
سعيد مقصودي،فريد بهرامي