شماره مدرك :
5701
شماره راهنما :
5323
پديد آورنده :
محمد عليزاده ساماني، بنيامين
عنوان :

محاسبه پايه هاي گروبنر به وسيله الگوريتم F5

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
رياضي محضي﴿هندسه﴾
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
سال دفاع :
1389
صفحه شمار :
[هفت]،156ص.: مصور،جدول
يادداشت :
ص.ع.به فارسي و انگليسي
استاد راهنما :
امير هاشمي، مهدي تاتاري
توصيفگر ها :
ايده آل چند جمله اي , تجزيه ي چند جمله اي , چند جمله اي كمينه ي ماتريس
تاريخ نمايه سازي :
15/1/90
استاد داور :
سجاد رحماني،مجيد گازر
دانشكده :
رياضي
كد ايرانداك :
ID5323
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتالي
چكيده انگليسي :
Abstract Solving polynomial systems is an important part of Computer Algebra since a lot of practical problems cryptography robotics error correcting codes signal theory and so on can be solved using this technique Among all available methods for solving polynomial systems computation of Gr bner bases remains one of the most powerful tools in prac ce In 1965 Buchberger has proposed the first algorithm to compute Gr bner bases Since 90 percent of the time to compute a Gr bner basis by Buchberger algorithm is spent for computing the reductions to zero useless computation then it is a very challenging question to have a criterion to remove useless cri cal pairs In 2002 Faug re could design a new and more e cient algorithm F5 which computes no reduc ons to zero in almost all cases In fact if the input system of this algorithm is a regular sequence then F5 computes a Gr bner basis without any reduction to zero The criteria used in F5 algorithm are called F5 and IsRewritten criterion It is worth noting that there is no proof for the correctness of IsRewritten criterion in the related paper In this thesis we study the theory behind the F5 algorithm its correctness and its termination First we state a proof for IsRewritten criterion We show then by a counterexample that the original proof of F5 criterion by Faug re is false and we propose a new and correct proof for it After this we discuss about termina on of F5 algorithm and we explain that the original proof of F5 termina on in the related paper is false and so it remains as an open problem Furthermore we apply IsRewritten criterion on improved Buchberger algorithm in a non trivial way to have a new algorithm simpler than F5 and more e cient and more stable than Buchberger algorithm At the end we study some new applications of Gr bner bases We propose first a new algorithm for factoring polynomials over algebraic extension fields After this we introduce a new and efficient method for computing minimal polynomial of matrices which is more efficient than the corresponding procedure in Maple and we develop it to compute minimal polynomial of matrices over algebraic extension fields For the third application we use the last idea to propose an algorithm to compute minimal polynomial of parametric matrices using Gr bner bases of parametric polynomial ideals Key words Polynomial Ideal Gr bner bases F5 Algorithm Polynomial Factorization Minimal Polynomial of Matrices
استاد راهنما :
امير هاشمي، مهدي تاتاري
استاد داور :
سجاد رحماني،مجيد گازر
لينک به اين مدرک :

بازگشت