شماره مدرك :
5888
شماره راهنما :
5503
پديد آورنده :
مرادي، رضا
عنوان :

بهينه سازي توپولوژي ورق بيضوي براي بيشينه كردن بار بحراني كمانش

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
طراحي كاربردي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده مكانيك
سال دفاع :
1389
صفحه شمار :
[هشت]،95ص.: مصور،جدول،نمودار
يادداشت :
ص.ع.به فارسي و انگليسي
استاد راهنما :
عليرضا شهيدي
استاد مشاور :
حسن موسوي
توصيفگر ها :
كمانش , روش ريلي رينز , روش اجزاء محدود
تاريخ نمايه سازي :
19/2/90
استاد داور :
حسن نحوي، مهران مرادي
دانشكده :
مهندسي مكانيك
كد ايرانداك :
ID5503
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتالي
چكيده انگليسي :
Topology Optimization of Elliptical plate for Maximizing Buckling Load Reza Moradi r moradi@me iut ac ir February 6 2011 Department of Mechanical Engineering Isfahan University of Technology Isfahan 84156 83111 IranDegree M Sc Language FarsiA R Shahidi Assist Prof Supervisor Shahidi@cc iut ac irABSTRACT Plates are one of the most useful parts and pieces of industrial systems and structures which are under load sothat most important and extended usage of them is producing structures for example airplane aircraft sea structurein mechanical and structural engineering One of the important points in designing such structure which are underintensive load is forbidding buckle So for designing in this part increasing critical buckling load has been offered in this thesis try to achieve optimum distribution of mass and stiffness for achieving maximum amount forbuckling load with use optimization technique in designing optimum thickness of elliptical plate which in that sbuckling analysis we need to solve an eignvalue problem Optimization of plate for maximizing buckling load isvery complicated because the in plane stress resultants in the prebuckled state of a plate are dependent of thicknessdistribution Because of complicated geometry and boundary conditions for an elliptical plate solution of thisproblem has some difficulty To achieving optimum thickness topology for elliptical plate generate mesh andassume that thickness is design variable So that critical buckling load as a objective function will be maximized Two types of constrains are in this problem 1 some of the mass for all elements are constant 2 thickness of everyelements has a constrain on their thickness Solution of this problem has been solved in two steps In first step we solve buckling problem for ellipticalplate with constant and variable thickness under different boundary conditions In this step we use two ways forsolve the problem Reyleigh Ritz Method and standard finite element In analysis of second step results of last stephas been optimized and at last with use one of the optimization numerical methods optimum distribution of massand stiffness for achieving maximum buckling load under different boundary conditions In this step for sensitivityanalysis calculate sense of buckling load according to design variables So that optimum topology of elliptical platewith different radius ratio under Simple Clamp Clamp Simple Clamp Free and Free Simple boundary conditions To maximizing buckling load with accurate to constraints and effect of different argument to optimum topology KeywordsOptimization Buckling Elliptical Plate Reyleight Ritz Finite Element
استاد راهنما :
عليرضا شهيدي
استاد مشاور :
حسن موسوي
استاد داور :
حسن نحوي، مهران مرادي
لينک به اين مدرک :

بازگشت