شماره مدرك :
6368
شماره راهنما :
400 دكتري
پديد آورنده :
دوست حسيني، روح ا...
عنوان :

استفاده از توابع زماني متعامد در حل مساله كنترل بهينه و كاربرد آن در مصرف سوخت خودرو هيبريد

مقطع تحصيلي :
دكتري
گرايش تحصيلي :
كنترل
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده برق و كامپيوتر
سال دفاع :
1390
صفحه شمار :
ده،138ص.: مصور،جدول،نمودار
يادداشت :
ص.ع.به فارسي و انگليسي
استاد راهنما :
فريد شيخ الاسلام
استاد مشاور :
عباس كوزاني، سعيد حسين نيا
توصيفگر ها :
روش مستقيم , روش توابع هيبريد
تاريخ نمايه سازي :
29/8/90
استاد داور :
محمد جواد يزدان پناه، محمد دانش، جعفر قيصري
دانشكده :
مهندسي برق و كامپيوتر
كد ايرانداك :
ID400 دكتري
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتالي
چكيده انگليسي :
Abstract In recent years most vehicle manufacturing companies are introducing variousmethods to reduce the fuel consumption of the vehicles that they produce A HybridElectric Vehicle HEV configuration provides an efficient platform for reducing the fuelconsumption and emissions of the vehicle Electrical energy and natural resources such asgasoline and gas are both used in a HEV to produce the necessary power for the vehicle The efficient management of these two sources of energy in a HEV requires developmentof new optimal control methods HEVs are powered by an electric system and an internal combustion engine Thecomponents of a HEV need to be coordinated in an optimal manner for the vehicle todeliver the desired performance This thesis presents two numerical methods based onorthogonal functions called direct method and hybrid functions for optimal powermanagement in HEVs with inequality constraints The approach consists of reducing theoptimal control problem to a set of algebraic equations by approximating the statevariable which is the energy of the electric storage system and the control variable whichis the power of fuel consumption This approximation uses orthogonal functions withunknown coefficients In addition the inequality constraints are converted to equalconstrains The advantage of the developed method is that its computational complexityis less than that of the dynamic and non linear programming approaches Many of the real systems have uncertainty in their model A major problem in optimalcontrol theory is the existing uncertainty in initial state cost function or state equations In this thesis a generalized Euler Lagrange approach is employed to find min maxoptimal solution of uncertain systems with an uncertain or a certain cost function usingthe calculus of variation The uncertainty in the system is assumed to be in a closed set The work is based on an admissible system path or a trajectory which minimizes themaximum value of the function over all uncertainty First of all a new form of Euler Lagrange conditions for uncertain systems is presented Then several cases are indicatedwhere final condition can be specified or free Also necessary conditions are introducedfor the existence of min max optimal solution of the uncertain systems Also the methodis generalized when the uncertainties are bounded with using Pontryagin s minimumprinciple Finally the efficiency of the proposed methods is verified through an optimalcontrol problem in HEVs using direct method
استاد راهنما :
فريد شيخ الاسلام
استاد مشاور :
عباس كوزاني، سعيد حسين نيا
استاد داور :
محمد جواد يزدان پناه، محمد دانش، جعفر قيصري
لينک به اين مدرک :

بازگشت