پديد آورنده :
مستوفي، محمد
عنوان :
بررسي ارتعاشات غير خطي و پديده دو شاخه اي شدن در سيستم هاي ارتعاشي متصل به زمين
مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
طراحي كاربردي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده مكانيك
صفحه شمار :
بيست، 145ص.: مصور، جدول، نمودار
يادداشت :
ص.ع. به فارسي و انگليسي
توصيفگر ها :
جرم متصل به زمين , روش هاي اغتشاشي , مقياس متعدد زماني , معدل گيري , تشديدهاي اوليه و ثانويه
تاريخ نمايه سازي :
27/10/90
استاد داور :
محمود همامي، مهران مرادي
تاريخ ورود اطلاعات :
1396/10/12
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتالي
چكيده انگليسي :
Nonlinear vibration and bifurcation analysis of grounded mass systems Mohammad Mostoufi m mostoufy@me iut ac ir Date of Submission 2011 7 31 Department of Mechanical Engineering Isfahan University of Technology Isfahan 84156 83111 Iran Degree M Sc Language FarsiSupervisor Hassan Nahvi hnahvi@cc iut ac irAbstractA mechanical system with single degree of freedom including both linear and nonlinear springs in series is namedmass grounded system This system can be set parallel to linear or nonlinear dampers Applications of this systemare suspensions and vibration isolators In the first part of the thesis nonlinear vibrations of three grounded mass systems that are described below areinvestigated 1 First system includes linear and nonlinear springs in series and the whole spring system is connected to a lumpedmass 2 Second system is the same as the first system but a linear damper in parallel is also added to the system 3 Third system is the same as the second system but a nonlinear damper in parallel is added to the system By using a perturbation method such as Multiple Time Scale MTS or Averaging free and forced vibrations ofthese systems are analyzed For free vibrations the analytical results are compared with the numerical integrationresults Also forced vibrations of the systems including primary and secondary resonances are studied and theeffects of different parameters on the frequency responses are investigated In the second part of the thesis the possibility of bifurcation in these systems is investigated by changing differentcontrol parameters Bifurcation diagrams phase plane diagrams Poincare maps and time responses are employed todistinguish periodic quasi periodic and chaotic responses Keywords Grounded Mass Perturbation Analysis Multiple Time Scale Averaging Primaryand Secondary Resonances Bifurcation
استاد داور :
محمود همامي، مهران مرادي