شماره مدرك :
7272
شماره راهنما :
6778
پديد آورنده :
معيني كربكندي، زهرا
عنوان :

انشعاب هاپف در دونوع از سيستم هاي ليينارد

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
رياضي كاربردي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
سال دفاع :
1391
صفحه شمار :
نه، 110ص.: مصور، جدول، نمودار
يادداشت :
ص.ع. به فارسي و انگليسي
استاد راهنما :
رسول عاشقي
استاد مشاور :
حميدرضا ظهوري زنگنه
توصيفگر ها :
قضاياي پايه , ثابت هاي لياپانف و سيكل پذيري هاپف براي سيستم هاي ليينارد
تاريخ نمايه سازي :
21/8/91
استاد داور :
محمدرضا رئوفي، رضا مزروعي سبداني
تاريخ ورود اطلاعات :
1396/09/21
كتابنامه :
كتابنامه
رشته تحصيلي :
علوم رياضي
دانشكده :
رياضي
كد ايرانداك :
ID6778
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتالي
چكيده انگليسي :
Hopf Bifurcation for Two Types of Li nard Systems Zahra Moini Korbekandi z moinikorbekandi@math iut ac ir 18 September 2012 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr Rasoul Asheghi rasoul asheghi@cc iut ac ir Advisor Dr Hamid Reza Zohouri Zangeneh hamidz@cc iut ac ir 2010 MSC 34C07 34C21 Keywords Limit cycle Hopf bifurcation Li nard system Liapunov constant Abstract Hilbert s 16th problem was posed by David Hilbert at the Paris conference of the InternationalCongress of Mathematicians in 1900 together with the other 22 problems The original problem wasposed as the problem of the topology of algebraic curves and surfaces Actually the problem consistsof two similar problems in di erent branches of mathematics 1 An investigation of the relative positions of the branches of real algebraic curves of degree n andsimilarly for algebraic surfaces 2 The determination of the upper bound for the number of limit cycles in polynomial vector elds ofdegree n and an investigation of their relative positions Usually the maximum of the number of limit cycles is denoted by H n and is called the Hilbertnumber Recall that a limit cycle is an isolated closed orbit It is the forward or backward limit set of nearby orbits In many application the number and position of limit cycles are importantto understand the dynamical behavior of the system This problem is still open even for the case n 2 Limit cycle behavior is observed in many physical and biological systems The problem of determiningwhen a nonlinear dynamical system exhibits limit cycle has been of great interest for more than acentury Limit cycles cannot occur in linear systems conservative systems and gradient systems Thelimit cycles are caused by nonlinearities In mathematics more speci cally in the study of dynamical systems and di erential equations
استاد راهنما :
رسول عاشقي
استاد مشاور :
حميدرضا ظهوري زنگنه
استاد داور :
محمدرضا رئوفي، رضا مزروعي سبداني
لينک به اين مدرک :

بازگشت