پديد آورنده :
مجدي، بنت الهدي
عنوان :
بررسي حدي اردوش-شش روي چند خانواده از گراف ها
مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
رياضي كاربردي
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
صفحه شمار :
هشت، 55ص.: مصور، جدول، نمودار
يادداشت :
ص.ع. به فارسي و انگليسي
استاد راهنما :
غلامرضا اميدي
استاد مشاور :
بهناز عمومي
توصيفگر ها :
تابع شمول , درخت
تاريخ نمايه سازي :
24/8/91
استاد داور :
سعيد اكبري، ابراهيم قرباني
تاريخ ورود اطلاعات :
1396/09/21
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتالي
چكيده انگليسي :
The Erdos Sos Conjecture on Some Families of Graphs Bentolhoda Majdi b majdibafruee@math iut ac ir August 25 2012 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr Gholam Reza Omidi romidi@cc iut ac ir Advisor Dr Behnaz Omoomi bomoomi@cc iut ac ir 2010 MSC 05D10 Keywords Erd s S s conjecture Inclusion Tree Graph Abstract We investigate a problem in extremal graph theory known as the Erd s S s conjecture In 1959 n k 1 Erd s and Gallai proved every graph G of order n with e G contains a path with k edges 2Motivated by the result Erd s and S s made the following conjecture in 1963 n k 1 Erd s S s Conjecture ESC If G is a graph of order n with e G then G contains every 2tree T with k edges as a subgraph n k 1 n n k Note that e G if and only if e G Thus the Erd s S s conjecture can be 2 2restated as follows n n k Suppose that G is a graph of order n and T is any tree of size k If e G then G contains 2T as a subgraph However approximate versions of the conjecture were proved by Ajtai koml s and Szemer di usingthe Regularity Lemma They showed that for su ciently large k and su ciently large n ESC is truefor all graphs of order n that satisfy the hypothesis This conjecture is still open There are some partial results mainly on two directions on thisconjecture One is to pose conditions on the graph G In 1996 Brandt and Dobson showed that ESCholds for graphs with girth at least 5 Sacl and Wo niak improved this result and showed that ESC
استاد راهنما :
غلامرضا اميدي
استاد مشاور :
بهناز عمومي
استاد داور :
سعيد اكبري، ابراهيم قرباني