شماره مدرك :
7520
شماره راهنما :
488 دكتري
پديد آورنده :
دشتي، مهشيد
عنوان :

ميانگين هاي پاياي برداري- مقدار روي فضاي نگاشت هاي خطي كران دار

مقطع تحصيلي :
دكتري
گرايش تحصيلي :
رياضي محض﴿آناليز هارمونيك﴾
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
سال دفاع :
1391
صفحه شمار :
[شش]،91ص.: مصور،جدول،نمودار
يادداشت :
ص.ع.به فارسي و انگليسي
استاد راهنما :
رسول نصر اصفهاني، محمدتقي جهانديده
استاد مشاور :
سيما سلطاني زماني
توصيفگر ها :
جبر باناخ , ميانگين هاي پاياي توپولوژيك , جبرهاي ليپ شيتز , فضاي مشخصه
تاريخ نمايه سازي :
28/11/91
استاد داور :
غلامحسين اسلام زاده، بهرام خاني رباطي، فريد بهرامي
دانشكده :
رياضي
كد ايرانداك :
ID488 دكتري
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتالي
چكيده انگليسي :
Vector valued invariant means on spaces of bounded linear maps Mahshid Dashti m dashti@math iut ac ir November 14 2012 Doctor of Philosophy Thesis Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 IranSupervisors Dr Rasoul Nasr Isfahani isfahani@cc iut ac ir Dr Mohammad Taghi Jahandideh jahandid@cc iut ac ir Advisor Dr Sima Soltani Renani simasoltani@cc iut ac ir Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran AbstractIn this thesis we establish several hereditary properties for the generalized character spaceof a Banach algebra A For a nonzero generalized character on A we then introduceand study vector valued invariant means on the space of bounded linear maps We alsoestablish several characterizations for existence of this means as well as several hereditaryproperties In the sequel for a nonzero character on A we study the relation betweenexistence of topological invariant means on duals of Banach algebras and existence ofvector valued invariant means Finally for C 0 we characterize existence of topologi cal invariant mean bounded by C on duals of Lipschitz algebras Key WordsBanach algebra derivation Lau product locally compact groups spectrum topological in variant mean tensor product vector valued invariant mean IntroductionLet A be a Banach algebra and let Y be a Banach A bimodule Then a linear map D A Yis a derivation if D ab D a b a D b a b A For example let Y and setD a a a a A Then D is a derivation these derivations are inner derivations The Banach algebra A is called amenable if every bounded derivation D A Y is aninner derivation for all Banach A bimodules Y this important concept was introduced byJohnson 9 where it is proved that the group algebra L1 G is amenable precisely whenthe locally compact group G is amenable i e there is an invariant mean m L G C Several authors obtained some results with the help of invariant means see for example 1 3 and 4 In the same year invariant means on spaces of vector valued functions on a locallycompact group G were rst considered by Husain and Wong 8 they studied invariant meanon L G E which takes values in E the continuous dual of a separated locally convexspace E see also 2 and 7 In fact the de nition of invariant mean on a spaces of vector valued functions reduces to the usual one introduced by Greenleaf 5 1
استاد راهنما :
رسول نصر اصفهاني، محمدتقي جهانديده
استاد مشاور :
سيما سلطاني زماني
استاد داور :
غلامحسين اسلام زاده، بهرام خاني رباطي، فريد بهرامي
لينک به اين مدرک :

بازگشت