شماره مدرك :
7817
شماره راهنما :
7282
پديد آورنده :
حاج علي اكبري، آزاده
عنوان :

اعضاي پوچ توان، حلقه هاي تقليل يافته و حلقه هاي برگشت پذير ضعيف

مقطع تحصيلي :
كارشناسي ارشد
گرايش تحصيلي :
رياضي محض
محل تحصيل :
اصفهان: دانشگاه صنعتي اصفهان، دانشكده علوم رياضي
سال دفاع :
1391
صفحه شمار :
نه،87ص.
يادداشت :
ص.ع.به فارسي و انگليسي
استاد راهنما :
محمدرضا ودادي
استاد مشاور :
محمود بهبودي
توصيفگر ها :
حلقه هاي نيمه مركزي چپ كمين , حلقه هاي شبه نرمال , حلقه هاي NCI , حلقه هاي MC2 , حلقه هاي مستقيما متناهي , حلقه هاي منظم , حلقه هاي صفر درجي
تاريخ نمايه سازي :
10/4/92
استاد داور :
حسين خبازيان، عاطفه قرباني
دانشكده :
رياضي
كد ايرانداك :
ID7282
چكيده فارسي :
به فارسي و انگليسي: قابل رويت در نسخه ديجيتالي
چكيده انگليسي :
Nilpotent Elements Reduced Rings And Weakly Reversible Rings Azadeh Hajaliakbari a hajaliakbari@math iut ac ir January 14 2013 Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156 83111 Iran Supervisor Dr Mohammad Reza Vedadi mrvedadi@cc iut ac ir Advisor Dr Mahmood Behboodi mbehboodi@cc iut ac ir 2010 MSC 16A30 16A50 16E50 16D30 16S50 16U80 Keywords Min leftsemicentral rings Quasi normal rings NCI rings reversible rings MC2 rings Directely f inite rings Regular rings W eakly Reversible rings Semicommutative rings Abstract Throughout this thesis all rings are associative with identity we studied nilpotent elements reduced rings and a generalization of reversible rings based on articles by Junchao Wei Libin Li ZhaoLiang and Yang Gang A ring R is said to be reduced if R has no non zero elements It is easy tosee that reduced ring R have the property ab 0 implies that ba 0 for all a b R Rings withlater property was called reversible in 7 where the term zero commutative is used for such rings Clearly reversible rings have the property ab 0 implies that aRb 0 for all a b R this propertywas called insertion of factors in 9 symmetricI SI in 26 and has been called semicommutative in 10 Because elsewhere in the literature semicommutative means other things we use the term zeroinsertive zi of 8 for such rings A ring R is called 2 primal if P R N R where P R is the primeradical of R and N R is the set of all nilpotent elements in R Shin in 1973 introduced the concept of2 primal rings and several authors investigated this rings We proved that reduced rings are 2 primal N regular left N duo Moreover in this thesis we investigated N I N CI and min left semicentralrings A ring R is called min left semicentral if every element of MEl R is left semicentral in Rwhere MEl R the set of all left minimal idempotents elements of R Clearly these rings are proper
استاد راهنما :
محمدرضا ودادي
استاد مشاور :
محمود بهبودي
استاد داور :
حسين خبازيان، عاطفه قرباني
لينک به اين مدرک :

بازگشت